• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular modeling of the complexation of proteins with strong anionic polyelectrolytes

Xu, Xiao 07 May 2018 (has links)
In dieser Arbeit untersuchen wir die elektrostatische Komplexierung zwischen Proteinen und anionischen, linearen bzw. dendritischen Polyelektrolyten mittels Molekulardynamik Simulationen in implizitem Lösungsmittel und mit expliziten Salzen. Die Proteine und Polyelektrolyte werden mit vergröberten Details simuliert. Jedes vergröberte Segment repräsentiert eine Aminosäure oder eine sich wiederholende chemische Untereinheit des Polyelektrolyten. Die Vergöberung ermöglicht Simulationen von großen Proteinen wie Humanalbumin oder dendritischen Polyelektrolyten, ohne dabei die essentiellen elektrostatischen Eigenschaften der Moleküle zu vernachlässigen. Wir validieren unsere Simulationen durch Kalorimetrieexperimente. Zur Interpretation der resultierenden Bindungs-freien Energien schlagen wir Theorien vor, die auf Gegenionen-Kondensation und Ladungs-Renormalisierung basieren. Die Arbeit zeigt die äußerst wichtige Bedeutung der kondensierten Gegenionen auf, die in allen untersuchten Systemen an der elektrostatischen Komplexierung teilhaben. Sowohl bei linearen als auch dendritischen Polyelektrolyten bewirken die kondensierten Gegenionen Ladungsrenormalisierung, die die elektrostatischen Wechselwirkungen in den Systemen abschwächt. Die Bindung wird durch die Freisetzung von Gegenionen bewirkt, was mit einem massiven Anstieg der Entropie einhergeht. Aufgrund der multivalenten Bindung können unsere Ergebnisse nicht mithilfe des konventionellen Langmuir-Adsorptionsisothermen interpretiert werden. Daher schlagen wir eine neuartige Interpretation der Langmuir-Adsorptionsisothermen vor, die einen sinnvollen Vergleich zwischen Simulationen und Experimenten ermöglicht. / In this thesis, we conducted a comprehensive study of the electrostatic complexation between proteins and anionic linear/dendritic polyelectrolytes, by means of molecular dynamics simulations with implicit solvent and explicit salt. The proteins and polyelectrolytes are both represented in a coarse-grained fashion. Each coarse-gained segment represents either an amino acid residue or the repeating chemical subunit of the polyelectrolyte. This modeling strategy allows for simulations of big proteins such as human serum albumin and dendritic polyelectrolytes of large generations, while the crucial molecular electrostatic properties are still well retained. Our simulations are validated further by calorimetry experiments. Finally, we propose theories based on counterion condensation and charge renormalization for interpreting the system binding free energies. Regarding all systems investigated here, the thesis demonstrates the crucial and ubiquitous role of condensed counterions which participates in the electrostatic complexation. For both linear and dendritic polyelectrolytes, we find a strong charge renormalization induced by the condensed counterions, which consequently suppresses electrostatic interactions to an appreciable extent. The resultant binding is governed by the release of those condensed counterions, resulting in a massive entropy gain. Due to the presence of the multivalent binding, we propose a new interpretation of the conventional Langmuir adsorption isotherm, which ensures a meaningful comparison between simulations and experiments.
2

Novel polyelectrolyte complexes for oral insulin delivery

Ibie, Chidinma O. January 2013 (has links)
Oral delivery of insulin used for the management of Type 1 Diabetes could be referred to as one of the major long term goals of diabetes research. However, the bioavailability of orally administered insulin is significantly compromised by enzymatic degradation in the GI tract and poor enteral absorption of the protein due to its macromolecular size and hydrophilicity. Nano-sized polymer-protein polyelectrolyte complexes (PECS) formed by electrostatic interactions between insulin and Polyallylamine-based polymers at pH 7.4 have been adapted to facilitate oral insulin delivery. Polyallylamine (15kDa) was quaternised by methylation of its primary amines using methyl iodide to yield quaternised Paa (QPaa). Average level of polymer quaternisation was determined by elemental analysis and was found to be 72 ± 2mol%. Subsequent thiolation of Paa and QPaa using two different thiolation procedures involving carbodiimide mediated conjugation to N-acetylcysteine (NAC) and modification of the polymers using 2-iminothiolane hydrochloride yielded their respective NAC and 4-thiobutylamidine (TBA) conjugates: Paa-NAC/QPaa-NAC and Paa-TBA/QPaa-TBA. Estimation of the free thiol content of these thiomers by iodometric titration showed that both Paa-NAC and QPaa-NAC displayed 60 ± 1.2 and 60 ± 4.3ìmol free thiol groups per gram polymer, while Paa-TBA and QPaa-TBA conjugates displayed 490 ± 18 and 440 ± 21ìmol free thiol groups per gram polymer respectively. Mixing optimal mass ratios of each polymer and insulin in Tris buffer at pH 7.4 resulted in the formation of soluble nanocomplexes. Complexes were characterised by transmittance measurements, particle size analysis, zeta potential, complexation efficiency, and transmission electron microscopy (TEM). Stable polymer-insulin complexes were observed to have hydrodynamic sizes between 50-200nm, positively charged zeta potential values ranging between 20-40mV and high insulin complexation efficiency (> 90%). Complexation of insulin with TBA conjugates however appeared to alter insulin conformation affecting the detection of complexed insulin by HPLC. TEM analysis revealed the formation of bilayered nanovessicles as well as conventional single-layered nanoparticles on complexation of insulin with QPaa and thiolated Paa/QPaa derivatives. In-vitro assessments of enzyme-protective effect of QPaa, Paa-NAC and QPaa-NAC insulin complexes showed that when compared to a free insulin control, all the aforementioned complexes could protect insulin from degradation by trypsin and á-chymotrypsin, but not from pepsin. In-vitro mucin adsorption assays showed that all polymers exhibited a similar mucoadhesive profile with their corresponding insulin PEC, with thiolated Paa derivatives adsorbing >20% more mucin than Paa. Thiolation of QPaa did not result in a noticeable improvement in its mucoadhesive capacity indicating that polymer-mucin thiol-disulphide interactions may be hindered by the presence of quaternary groups. The IC50 of each polymer was determined by MTT assays carried out on Caco-2 cells with or without the inclusion of a 24-hour cell recovery period. An MTT assay conducted without a recovery period indicated that quaternisation of Paa was associated with a 6-fold improvement in its IC50; also cells subjected to a 24-hour recovery period following treatment with QPaa (0.001-4mgml-1) showed no signs of toxicity. Thiolation of Paa resulted in slight (≤ 2 fold) improvements in IC50, while thiolation of QPaa resulted in a decrease in IC50 values obtained both with and without a cell recovery period. Each polymer was subsequently labelled with rhodamine B isothiocyanate (RBITC) and complexed with fluorescein isothiocyanate (FITC)-insulin. Monitoring uptake of these complexes by Caco-2 cells using fluorescence microscopy with DAPI staining indicated that uptake of QPaa and QPaa-TBA complexes was mainly intracellular being localised within the perinuclear area of cells highlighted by DAPI. Hence, intracellular uptake of PECS by Caco-2 cells was enhanced by Paa quaternisation and TBA-based thiolation of QPaa.
3

Designing Biomimetic Materials for Biomedical Applications

Jessica E Torres (17604162) 12 December 2023 (has links)
<p dir="ltr">The goal of this thesis is to design nature-inspired biomimetic materials that recapitulate essential features of tissues for biomedical applications including tissue modeling of drug transport and surgical adhesion.</p><p dir="ltr">The first part of this thesis utilizes collagen and glycosaminoglycans to mimic tissues for preclinical modeling of large-molecule drug transport. We first utilize hydrazone crosslinking chemistry with hyaluronic acid to form interpenetrating networks with collagen at different concentrations. The interpenetrating networks enabled a wide range of mechanical properties, including stiffness and swellability, and microstructures, such as pore morphology and size, that can better recapitulate diverse tissues. The mechanical and microstructural differences translated into differences in transport of the macromolecules of different sizes and charges from these matrices. Large macromolecules were impacted by mesh size, whereas small macromolecules were influenced primarily by electrostatic forces. The tunable properties demonstrated by the collagen and crosslinked hyaluronic acid hydrogels can be used to mimic different tissues for early-stage assays to understand drug transport and its relationship to matrix properties.</p><p dir="ltr">We then explore how the glycosaminoglycans hyaluronic acid, chondroitin sulfate, and heparin in collagen hydrogels influence drug transport via glycosaminoglycan-drug interactions and network development. Incorporating different types and concentrations of glycosaminoglycans led to glycosaminoglycan-collagen hydrogels with a range of collagen networks and negative charge densities to recapitulate different tissue compositions. Hyaluronic acid increased the overall viscosity of the hydrogel matrix, and chondroitin sulfate and heparin altered collagen fibrillogenesis. All three GAGs formed concentration-dependent polyelectrolyte complexes with positively charged macromolecules. Transport of positively charged macromolecules through collagen gels with chondroitin sulfate and high concentrations of heparin was inhibited due to complexation and charge effects. Conversely, collagen with low concentrations of heparin hastened the transport of macromolecules due to the limited collagen network resulting from fibrillogenesis inhibition. Overall, the addition of different GAGs into tissue models can better recapitulate native tissue to accurately predict therapeutics transport through a variety of tissues.</p><p>17</p><p dir="ltr">The second part of this thesis investigates the impact of pH and oxidation on an elastin- and mussel-inspired surgical sealant. We combined sodium periodate, an oxidizer, with an L-3,4-dihydroxyphenylalanine-modified elastin-like polypeptide to elucidate how the crosslinking mechanism and intermediate formation impacted adhesion, cure time, and stiffness. Formulations resisted burst pressures greater than physiological internal pressures. They did not swell and had stiffnesses similar to those of soft tissues, and their gelation times varied from seconds to hours. Small increases in the formulation pH led to the formation of α,β-dehydrodopamine intermediates which facilitated the development of multiple crosslinking networks. The mussel-inspired elastin-like adhesive can serve as a model of mussel proteins to further improve our understanding of mussel chemistry. This study exemplifies the importance of pH and oxidation on the performance of mussel-inspired adhesives in surgical sealing within physiological environments.</p><p dir="ltr">The final part of this thesis explores using biomimetic designs in an outreach activity aimed at engaging high school women in chemical engineering. The design and application of the activity led to increased interest in chemical engineering among the participants. There was greater alignment between students' aspirations and the field of chemical engineering, highlighting the potential for such outreach initiatives to inspire future generations of chemical engineers.</p>
4

Structure et mécanisme d’élaboration de biomatériaux par complexation contrôlée de polysaccharides / Structure and elaboration mechanism of biomaterials by controlled complexation of polysaccharides

Costalat, Marie 03 December 2014 (has links)
Nos travaux ont porté sur le développement d'une méthode contrôlée de complexation de polyélectrolytes. La complexation est un processus spontané, sous contrôle cinétique et irréversible dans le cas de polysaccharides tels que le chitosane et les polysulfates, essentiellement le sulfate de dextrane ou l'héparine. Une conséquence de ce contrôle cinétique est que l'obtention d'objets de taille colloïdale requiert de travailler à fortes dilutions. De plus, les nanovecteurs obtenus ne sont pas toujours compatibles avec des conditions d'utilisation dans des milieux physiologiques. Le contrôle de l'association de polysaccharides se fait par écrantage des interactions électrostatiques attractives en présence de chlorure de sodium à la concentration au moins égale à 2 mol.L-1. L'élimination du sel par dialyse induit la formation d'hydrogels dont les caractéristiques et les propriétés dépendent principalement du rapport de charges n+/n- et de la cinétique d'élimination du sel. Ainsi, l'on peut former des hydrogels massifs ou des systèmes dispersés à des concentrations en polymères jusqu'à 30 fois plus élevées que par les méthodes sous contrôle cinétique. De plus, cette technologie permet l'encapsulation des principes actifs dans les particules qui peuvent aussi être fonctionnalisées par des biomolécules d'adressage. Le résultat majeur de ce travail réside en la maîtrise des associations entre polysaccharides de charges opposées, permettant d'obtenir des systèmes colloïdaux et massifs à fort potentiels d'applications biomédicales / Our work dealt with the development of a controlled method of polyelectrolyte complexation. The complexation is a spontaneous process, under kinetic control and irreversible in the case of polysaccharides such as the chitosan and polysulfates, essentially dextran sulfate or heparin. A consequence of this kinetic control is the requirement to work at high dilution to obtain objects of colloidal size. Moreover, the obtained nanovectors were not always adapted for use in physiological media. The control of the association of polysaccharides was achieved by screening the attractive electrostatic interactions in the presence of sodium chloride at concentration at least equal to 2 mol. L-1. Removal of salt by dialysis resulted in the formation of hydrogels, whose characteristics and properties depended mainly on the charge ratio n +/ n- and the kinetics of the salt elimination. Thus, massive or dispersed hydrogels were formed at polymer concentrations up to 30 times higher than by the methods under kinetic control. Furthermore, this technology allowed the encapsulation of active ingredients in the particles that could also be functionalized with biomolecules for targeting. The major result of this work was the control over the associations between oppositely charged polysaccharides which provided colloidal and massive systems of high potentialities in biomedical applications
5

Physical and Biological Properties of Synthetic Polycations in Alginate Capsules

Kleinberger, Rachelle 04 1900 (has links)
The use of cell transplantation to treat enzyme deficiency disorders is limited by the immune response targeted against foreign tissue or the use of life-long immunosuppressants. Hiding cells from the immune system in an encapsulation device is promising. Cells encapsulated within an anionic calcium alginate hydrogel bead are protected through a semi-permeable membrane formed by polycation, poly-L-lysine (PLL). A final layer of alginate is added to hide the cationic PLL surface but this has proved to be difficult creating capsules which are prone to fibrotic overgrowth, blocking exchange of nutrients, waste and therapeutic enzymes through the capsule. For long term applications these capsules need to be both biocompatible and mechanically robust. This thesis aims to address the biocompatibility issue of high cationic surface charge by synthesizing polycations of reduced charge using N-(3- aminopropyl)methacrylamide hydrochloride (APM) and N-(2- hydroxypropyl)methacrylamide (HPM) and study the associated mechanical properties of the capsules using micropipette aspiration. Micropipette aspiration was applied and validated for alginate based capsules (gel and liquid core) to quantify stiffness. Varying ratios of APM were used to control the overall charge of the polycations formed while HPM was incorporated as a neutral, hydrophilic, nonfouling comonomer. The molecular weight (MW) was controlled by using reversible addition-fragmentation chain transfer (RAFT) polymerization. The biocompatibility of these polymers was tested by cell adhesion and proliferation of 3T3 fibroblasts onto APM/HPM copolymer functionalized surfaces and by solution toxicity against C2C12 myoblasts. The ability for the APM/HPM copolymers to bind to alginate and form capsules was also assessed, along with the integrity and stiffness of the capsule membrane with or without additional covalent cross-linking by reactive polyanion, poly(methacrylic acid-co-2-vinyl-4,4- dimethylazlactone) (PMV60). Thermo-responsive block copolymers of N-isopropylacrylamide (NIPAM) and 2- hydroxyethylacrylamide (HEA) were also synthesized as potential drug delivery nanoparticles, showing control over micelle morphology with varying NIPAM to HEA ratios. / Thesis / Doctor of Science (PhD) / The treatment of enzyme deficiency disorders by cell transplantation is limited by the immune attack of foreign tissue in absence of immunosuppressants. Cells protected in an encapsulation device has shown promise. Poly-L-lysine, a widely used membrane material in these protective capsules, binds to the anionic gel entrapping living cells because it is highly cationic. The high cationic charge is difficult to hide causing the immune system to build tissue around the capsule, preventing the encapsulated cells from exchanging nutrients and therapeutic enzymes. This thesis aims to replace poly-L-lysine by synthesizing a series of more biocompatible materials of decreasing cationic charge. These materials were studied for the ability to support tissue growth and form stable capsules. The membrane strength was measured using an aspiration method validated for these types of capsules. Reducing the cationic charge of the materials increased the biocompatibility of the capsule membrane but also made for weaker membranes.
6

Microparticules polysaccharides aux propriétés antibactériennes dirigées contre S. Aureus / Polysaccharides microparticles with antibacterial properties against S. Aureus

Dammak, Ali 19 July 2017 (has links)
Staphylococcus aureus a été classé parmi les bactéries les plus pathogènes du genre Staphylococcus. Ce pathogène est responsable d'infections localisées (plaies chroniques, infections sur prothèses) voire de septicémies et d’infections nosocomiales. L’objectif principal de ce projet est d’élaborer des vecteurs colloïdaux biocompatibles à base de polysaccharides, chargés en principe actif antibactérien, et ciblant spécifiquement des biofilms de S. aureus. La méthode de complexation polyélectrolytes entre polysaccharides de charge opposée (chitosane/alginate et chitosane/dextrane sulfate) a été sélectionnée pour élaborer des particules de taille micrométrique. Ces microparticules n’étant pas stables, elles ont été stabilisées par réticulation chimique. Un antibiotique à large spectre d’activité de la famille des fluoroquinolones, la ciprofloxacine, a été séquestrée dans les microparticules. Des essais microbiologiques ont été réalisés en planctonique et sur biofilms, sur une souche de S. aureus et une souche de Pseudomonas aeruginosa. La ciprofloxacine encapsulée présente une activité antibactérienne (CMI, CMB et CMEB) plus importante que la ciprofloxacine libre. Par ailleurs, les MPs à base de chitosane/alginate sont plus actives que celles constituées de chitosane/dextrane sulfate. Enfin, un greffage d’un anticorps anti-protéine A a été réalisé sur les microparticules chitosane/alginate chargées en ciprofloxacine. Ces microparticules présentent une activité antibactérienne sur le biofilm de S. aureus légèrement améliorée par rapport aux microparticules dépourvues d’anticorps. / Staphylococcus aureus has been classified as one of the most pathogenic bacteria of the Staphylococcus genus. This bacterium is responsible for localized infections (chronic wounds, infections on artificial joints) or even septicemia and nosocomial infections. The main objective of this project is to develop biocompatible colloidal vectors based on polysaccharides, loaded with antibacterial active compound, and specifically targeting Staphylococcus aureus biofilms. The polyelectrolyte complexation between polysaccharide of opposite charge (chitosan / alginate and chitosan / dextran sulfate) has been selected to produce micrometric particles. By varying the total concentration of polysaccharide and the charge ratio between polyanion and polycation, it is possible to obtain variable sizes. As these microparticles were not stable, they were stabilized by chemical crosslinking. An antibiotic of the fluoroquinolone family, ciprofloxacin, with a large spectrum of activity, was entrapped in the micoparticles. Microbiological tests were carried out in planktonics and biofilms on different strains of Staphylococcus aureus and Pseudomonas aeruginosa. Loaded ciprofloxacin exhibits greater antibacterial activity (MIC, CMB and CMEB). Moreover, the chitosan / alginate-based MPs are more active than those consisting of chitosan / dextran sulfate. Finally, a grafting of an antiprotein A antibody was carried out on chitosan / alginate microparticles loaded with ciprofloxacin. These modified microparticles exhibit a slightly improved antibacterial activity compared to loaded ciprofloxaxin microparticles whitoutantibody.

Page generated in 0.1578 seconds