Spelling suggestions: "subject:"copolymer composite"" "subject:"copolymer eomposite""
91 |
FABRICATION OF SOLVENT AND TEMPERATURE SENSITIVEPOLYMER BILAYER BENDING ACTUATORSJian, Pei-Zhen 10 September 2019 (has links)
No description available.
|
92 |
Polymer Stabilized Magnetite Nanoparticles and Poly(propylene oxide) Modified Styrene-Dimethacrylate NetworksHarris, Linda Ann 15 May 2002 (has links)
Magnetic nanoparticles that display high saturation magnetization and high magnetic susceptibility are of great interest for medical applications. Nanomagnetite is particularly desirable because it displays strong ferrimagnetic behavior, and is less sensitive to oxidation than magnetic transition metals such as cobalt, iron, and nickel. Magnetite nanoparticles can be prepared by co-precipitating iron (II) and iron (III) chloride salts in the presence of ammonium hydroxide at pH 9-10. One goal of this work has been to develop a generalized methodology for stabilizing nanomagnetite dispersions using well-defined, non-toxic, block copolymers, so that the resultant magnetite-polymer complexes can be used in a range of biomedical materials.
Hydrophilic triblock copolymers with controlled concentrations of pendent carboxylic acids were prepared. The triblock copolymers contain carboxylic acids in the central urethane segments and controlled molecular weight poly(ethylene oxide) tail blocks. They were utilized to prepare hydrophilic-coated iron oxide nanoparticles with biocompatible materials for utility in magnetic field guidable drug delivery vehicles. The triblock copolymers synthesized contain 3, 5, or 10 carboxylic acids in the central segments with Mn values of 2000, 5000 or 15000 g/mol poly(ethylene oxide) tail blocks. A method was developed for preparing ~10 nm diameter magnetite surfaces stabilized with the triblock polymers. The carboxylic acid is proposed to covalently bind to the surface of the magnetite and form stable dispersions at neutral pH. The polymer-nanomagnetite conjugates described in this thesis have a maximum of 35 wt. % magnetite and the nano-magnetite particles have an excellent saturation magnetization of ~66 - 78 emu/g Fe3O4. Powder X-ray diffraction (XRD) confirms the magnetite crystal structure, which appears to be approximately single crystalline structures via electron diffraction spectroscopy analysis (EDS). These materials form stable magnetic dispersions in both water and organic solvents. / Ph. D.
|
93 |
OPTIMERING AV BROSTRUKTURERS PRESTANDA.En utredning om ersättning av betong i brokantbalkar till fiberförstärktpolymerkompositSvensson, Nathalie, Winsa, Mathias January 2024 (has links)
Inledning: Kantbalkar på broar är en utsatt konstruktionsdel som ofta har beständighetsproblem och betongkantbalkar är svåra att utföra till den kvalitet som krävs. I denna studie undersöks möjligheten att byta ut den traditionella betongkantbalken till en fiberförstärkt polymerkomposit (FRP-komposit) med avseende på trafiksäkerhet, beständighet och lönsamhet. Studien omfattar endast brokantbalkar och inte hela brokonstruktioner. Metod: Studien omfattar litteraturstudie och beräkningar. Insamling av information till litteraturstudien sker genom sökning i forskningsdatabaser. Beräkningar utförs genom handberäkningar och med hjälp av programvara. FEM Design 17 används för att ta fram inre spänningar i konstruktionen och Granta EduPack används för att hitta material som uppfyller kraven. Beräkningar utförs i enlighet med Eurokoderna. Resultat: Spänningar i konstruktionen uppgick som högst till 151 MPa. De karakteristiska hållfasthetsvärdena i materialet behövde som högst motsvara minst 240 MPa när reduktionsfaktorer bestämts. Av totalt 782 tillgängliga FRP-kompositer i Granta EduPack fanns 18 som klarade samtliga krav på bärförmåga. Litteraturstudien fann flera tidigare studier där FRP-kompositer använts i brokonstruktioner med goda resultat angående beständighet och långsiktig lönsamhet.Diskussion och slutsatser: Flera antaganden gjordes i beräkningarna, vilka förenklar modellen och påverkar resultatets pålitlighet. Vidare påverkas resultatet av både konstruktionens design och profilers tjocklek. Resultatet av beräkningarna skulle dock kunna användas som en uppskattning av de hållfasthetsvärden som FRP-kompositer behöver uppnå i en kantbalkskonstruktion. Resultatet av litteraturstudien indikerar att en brokantbalk i FRPkomposit skulle vara fördelaktigt beständighetsmässigt, samt att det skulle kunna vara ekonomiskt lönsamt i längden, men det behövs vidare studier för att bekräfta detta. / Introduction: Edge girders on bridges are an exposed structural part that often has durability problems and concrete edge girders are difficult to produce to the required quality. In this study, the possibility of replacing the traditional concrete edge girder with a fibre reinforced polymer composite (FRP-composite) is investigated regarding traffic safety, durability, and profitability.The study covers only bridge edge girders and not entire bridge structures. Method: The study includes literature study and calculations. Collection of information for the literature study is done by searching in research databases. Calculations are performed by hand calculations and with the help of software. FEM Design 17 is used to produce internal stresses in the construction and Granta EduPack is used to find materials that meet the requirements. Calculations are conducted in accordance with the Eurocodes. Results: Stresses in the construction amounted to a maximum of 151 MPa. The characteristic strength values in the material had to correspond at most to at least 240 MPa when reduction factors were determined. Out of a total of 782 available FRP-composites in Granta EduPack, there were 18 that met all the load-bearing capacity requirements. The literature study found several previous studies where FRP-composites were used in bridge structures with good results regarding durability and long-term profitability. Discussion and conclusions: Several assumptions were made in the calculations, which simplify the model and affect the reliability of the results. Furthermore, the result if affected by both the design of the construction and the thickness of the profiles. However, the result of the calculations could be used as an estimate of the strength values that FRP-composites need to achieve in an edge girder construction. The results of the literature study indicate that a bridge edge girder in FRP-composite could be advantageous in terms of durability, and that it could be economically profitable in the long run, but further studies are needed to confirm this
|
94 |
Couplage ROMP et ATRP en milieu dispersé aqueux : préparation et étude morphologique de particules polymères compositesAiraud, Cédric 16 December 2008 (has links)
Le confinement de polymères incompatibles au sein de particules induit une séparation de phase et conduit à la formation de morphologies particulières (cœur-écorce, hémisphérique…). Cette nanostructuration est à l’origine de propriétés de filmification particulières qui justifient l’utilisation des particules polymères composites dans le cadre d’applications comme la formulation de peintures ou de revêtements. Ce travail s’intéresse au développement d’approches permettant de préparer ces particules polymères composites en une seule étape et en milieu aqueux. La stratégie proposée repose sur le couplage « en simultané » de deux polymérisations distinctes: la polymérisation de cyclooléfines par métathèse (ROMP) et la polymérisation radicalaire par transfert d’atome (ATRP). Après avoir mis en évidence les difficultés liées au couplage de la ROMP et de l’ATRP en milieu dispersé aqueux, deux approches originales faisant intervenir respectivement des conditions de miniémulsion et de microémulsion sont proposées. Pour chacune d’elles, la présentation du principe de la synthèse et l’analyse de ses résultats précèdent l’étude morphologique des particules produites. / So as to broaden the scope of their applications in paints, coatings and impact-resistant plastics, many investigations have been dedicated to the preparation of nanostructured colloids over the past decades. Original morphologies including core-shell, hemispherical and complex occluded structures (raspberry-like, golf ball-like, octopus-like) can now be readily prepared. This work proposes a new straightforward one-pot, one-step, one-catalyst strategy to prepare polymer composite particles based on the simultaneous combination of two mechanistically distinct polymerizations in aqueous dispersed media. Norbornene (NB) and methyl methacrylate (MMA) were converted via Ring-Opening Metathesis Polymerization (ROMP) and Atom-Transfer Radical Polymerization (ATRP), respectively. Two original routes, designed to ensure simultaneous ROMP and ATRP, respectively under mini- and microemulsion conditions, are proposed. Both are successively reviewed on chemical and colloidal levels. Specific attention is paid to the morphologies of the prepared particles.
|
95 |
Development and characterization of a shape memory polymer composite actuator for morphing structures / Développement et Caractérisation de composites à géométrie adaptative et à propriété de mémoires de formesBasit, Abdul 18 December 2012 (has links)
Les polymères à mémoire de forme (SMP) sont des matériaux qui peuvent revenir à leur forme d'origine lorsqu'un stimulus approprié (par exemple de la chaleur) est prévu. Ces polymères sont programmés par cycle de mémoire de forme qui se compose de deux parties: une partie de la programmation qui donne un effet mémoire de forme (SME) à savoir la forme temporaire pour le polymère et la partie de récupération où il revient à sa forme initiale. Les SMP ont une faible rigidité, donc, produisent de grandes déformations récupérables, mais produisent des forces de récupération faibles. Cependant, les composites SMP produisent des forces de récupération plus grandes car ils sont relativement rigide mais ont des souches moins récupérables. En outre, de forts actionneurs à mémoire de forme peuvent être produits si deux effets différents peuvent être combinés dans une structure unique. Une structure déjà active (par exemple des alliages à mémoire de forme) peut être intégré dans SMP. Par conséquent, un fort actionneur couplé peut être obtenu. [...] / Shape memory polymers (SMPs) are the materials which can return to their original shape when a suitable stimulus (e.g. heat) is provided. These polymers are programmed through shape memory cycle that consists of two parts: programming part which gives shape memory effect (SME) i.e. temporary shape to the polymer and the recovery part which return it to its original shape. SMPs have low stiffness, therefore, produce large recoverable strains, but produce low recovery forces. However, SMP composites produce larger recovery forces as they are relatively rigid but have less recoverable strains. Moreover, strong shape memory actuators can be produced if two different effects can be combined in a single structure. An already active structure (e.g shape memory alloys) can be embedded in SMP. Consequently, a strong coupled actuator can be obtained. In this work, the shape memory property of CBCM composite (an active composite that works on bimetallic affect) has been studied. CBCM stands for controlled behavior of composite material. CBCM activeness and its SM property has been coupled together to obtain a strong actuator. SM property has been obtained through thermo-mechanical programming at a temperature higher than glass transition temperature (Tg) of Epoxy resin used for its fabrication. The CBCM actuating properties have been studied through different one-step recoveries (unconstrained, constrained and recovery under load). Moreover, different asymmetrical CBCM composites have been developed by changing the position and orientation of the different layers used. These have been studied for their different actuation properties. Similarly, multi-step recoveries (unconstrained and constrained) have also been performed to show multi step actuation capabilities in CBCM. The actuating properties of CBCM have also been compared with symmetrical composite (SYM) to show the advantage of coupled properties in CBCM. It has been found that CBCM has the ability to give high strain, high recovery forces. Also, it can recover under load and recover to its original position at the temperatures lower than the deforming temperature used in the programming cycle.
|
96 |
Studies On The Dielectric And Electrical Insulation Properties Of Polymer NanocompositesSingha, Santanu 07 1900 (has links)
Today, nanotechnology has added a new dimension to materials technology by creating opportunities to significantly enhance the properties of existing conventional materials. Polymer nanocomposites belong to one such class of materials and even though they show tremendous promise for dielectric/electrical insulation applications (“nanodielectrics” being the buzzword), the understanding related to these systems is very premature. Considering the desired research needs with respect to some of the dielectric properties of polymer nanocomposites, this study attempts to generate an understanding on some of the existing issues through a systematic and detailed experimental investigation coupled with a critical analysis of the data. An epoxy based nanocomposite system is chosen for this study along with four different choices of nano-fillers, viz. TiO2, Al2O3, ZnO and SiO2. The focus of this study is on the properties of nanocomposites at low filler loadings in the range of 0.1 - 5% by weight and the properties under investigation are the permittivity/tan delta behaviors, DC volume resistivity, AC dielectric strength and electrical discharge resistant characteristics. Significant efforts have also been directed towards addressing the interface interaction phenomena in epoxy nanocomposites and their subsequent influence on the dielectric properties of the material.
The accurate characterization of the dielectric properties for polymer nanocomposites depends on the dispersion of nanoparticles in the polymer matrix and to achieve a good dispersion of nanoparticles in the epoxy matrix for the present study, a systematic design of experiments (DOE) is carried out involving two different processing methods. Consequently, a laboratory based epoxy nanocomposite processing methodology is proposed in this thesis and this process is found to be successful in dispersing nanoparticles effectively in the epoxy matrix, especially at filler concentrations lower than 5% by weight. Nanocomposite samples for the study are prepared using this method and a rigorous conditioning is performed before the dielectric measurements.
The dielectric properties of epoxy nanocomposites obtained in the present study show interesting and intriguing characteristics when compared to those of unfilled epoxy and microcomposite systems and few of the results are unique and advantageous. In an unexpected observation, the addition of nanoparticles to epoxy is found to reduce the value of nanocomposite real permittivity below that of unfilled epoxy over a wide range of frequencies. Similarly, it has been observed that irrespective of the filler type, tan delta values in the case of nanocomposites are either same or lower than the value of unfilled epoxy up to a filler loading of 5% by weight, depending on the frequency and filler concentration. In fact, the nanocomposite real permittivities and tan delta values are also observed to be lower as compared to the corresponding microcomposites of the same constituent materials at the same filler loading. In another significant result, enhancements in the electrical discharge resistant characteristics of epoxy nanocomposites (with SiO2/Al2O3 nanoparticles) are observed when compared to unfilled epoxy, especially at longer durations of discharge exposures. Contrary to these encouragements observed for few of the dielectric properties, the trends of DC volume resistivity and AC dielectric breakdown strength characteristics in epoxy nanocomposites are found to be different. Irrespective of the type of filler in the epoxy matrix, it has been observed that the values of both AC dielectric strengths and DC volume resistivities are lower than that of unfilled epoxy for the filler loadings investigated. The results mentioned above seem to suggest that there has to be an interaction between the nanoparticles and the epoxy chains in the nanocomposite and therefore, glass transition temperature (Tg) measurements are performed to characterize the interaction phenomena, if any. The results of Tg for all the investigated nanocomposites also show interesting trends and they are observed to be lower than that of unfilled epoxy up to certain nanoparticle loadings. This lowering of the Tg in epoxy nanocomposites was not observed in the case of unfilled and microcomposite systems thereby strongly confirming the fact that there exists an interaction between the epoxy chains and nanoparticles in the nanocomposite. Considering the variations obtained for the nanocomposite real permittivity and Tg with respect to filler loading, a dual nanolayer interface model is utilized to explain the interaction dynamics and according to the model, interactions between epoxy chains and nanoparticles lead to the formation of two epoxy nanolayers around the nanoparticle. Analysis shows that the characteristics of the interface region have a strong influence on the dielectric behaviors of the nanocomposites and the suggested interface model seems to fit the characteristics obtained for the different dielectric/electrical insulation properties rather well. Further investigations are performed to understand the nature of interaction between nanoparticles and epoxy chains through FTIR studies and results show that there is probably an occurrence of hydrogen bonding between the epoxide groups of the epoxy resin and the free hydroxyl (OH) groups present on the nanoparticle surfaces. The results obtained for the dielectric properties of epoxy nanocomposites in this study have widened the scope of applications of these functional materials in the electrical sector. The occurrence of lower values of real permittivity for nanocomposites is definitely unique and unexpected and this result has huge potential in electronic component packaging applications. Further, the advantages related to tan delta and electrical discharge resistance for these materials carry lot of significance since, electrical insulating materials with enhanced electrical aging properties can be designed using nanocomposite technology. Although the characteristics of AC dielectric strengths and DC volume resistivities are not found to be strictly advantageous for epoxy nanocomposites at the investigated filler loadings, these properties can be optimized when designing insulation systems for practical applications. In spite of all these advantages, serious and systematic research efforts are still desired before these materials can be successfully utilized in electrical equipment.
|
97 |
Computational and experimental studies of strain sensitive carbon nanotube filmsBu, Lei 08 December 2014 (has links) (PDF)
The excellent electrical and mechanical properties of carbon nanotubes (CNTs) provide interesting opportunities to realize new types of strain gauges. However, there are still challenges for the further development of CNT film strain gauges, for instance the lack of design rules, the homogeneity, stability and reproducibility of CNT films. This thesis aims to address these issues from two sides: simulation and experiment. Monte Carlo simulations show that both the sheet resistance and gauge factor of CNT films are determined essentially by the two-dimensional exclude area of CNTs. It was shown, for the first time, that the variation of the CNT film gauge factor follows the percolation scaling law. The sheet resistance and gauge factor both have a power-law divergence when approaching the percolation threshold. The standard deviation of film resistances, however, also increases correspondingly. These findings of simulations provide a general guide to the tailoring of material property of CNT films in strain sensing applications: a compromise should be made between the reproducibility, conductivity and sensitivity of CNT films depending on application purposes. From the experimental side, the processing parameters for the preparation of CNT dispersions were first investigated and optimized. The reproducibility of the film resistance is significantly improved by selecting a suitable sonication time. In strain measurements it was found that for most CNT films the film resistance responses nonlinearly to the applied strain. The dependence of the film resistance on the strain can be roughly divided into two regions with nearly linear behavior respectively. The gauge factor varies with the quality of CNTs and the depositing method. A gauge factor up to 8 was achieved in the high strain region. The nonlinear response behavior was found in simulations when the CNT waviness is properly taken into account. To achieve a high gauge factor and simultaneously retain the high conductivity and reproducibility, good-quality MWCNTs were integrated in polyethylene oxide (PEO). A high gauge factor up to 10 was achieved for the composite film with CNT weight fraction of 2.5%. The resistance and gauge factor can be tuned by changing the MWCNT weight fraction with respect to PEO. A careful comparison of simulation and experiment results show that a good qualitative agreement can be achieved between them in many respects.
|
98 |
Mechanical Behavior Study of Microporous Assemblies of Carbon Nanotube and GrapheneReddy, Siva Kumar C January 2015 (has links) (PDF)
Carbon nanotubes (CNT) and graphene have been one of the noticeable research areas in science and technology. In recent years, the assembly of these carbon nanostructures is one of the most interesting topic to the scientific world due to its variety of applications from nano to macroscale. These bulk nanostructures to be applicable in shock absorbers, batteries, sensors, photodetectors, actuators, solar cells, fuel cells etc.
The present work is motivated to study the detailed compressive behavior of three dimensional cellular assemblies of CNT and graphene. The CNT foams are synthesized by chemical vapor deposition method. It is interesting to study the compressive behavior of CNT foam in the presence external magnetic field applied perpendicular to CNT axis. The peak stress and energy absorption capability of CNT foam enhances by four and nearly two times in the presence of magnetic field as compared to the absence of the magnetic field. In the absence of magnetic field the deformation of CNT foam is obtained elastic, plateau and densification regions. Further CNT foam is loaded with iron oxide nanoparticles of diameter is ~ 40nm on the surface and detailed study of the compressive behavior of the foam by varying iron nanoparticles concentration. The peak stress and energy absorption capability of CNT foam initially decreases with increasing the intensity of the magnetic field, further increases the intensity of the magnetic field the maximum stress and energy absorption capability increases which is due to magnetic CNT and particles align in the direction of the magnetic field.
CNT surfaces were further modified by fluid of different viscosities. The mechanical behavior of CNT foam filled with fluids of varying viscosities like 100%, 95% and 90% glycerol and silicone oil are 612, 237, 109 and 279 mPa-s respectively. The mechanical behavior of CNT foam depends on both the intensity of magnetic field and fluid viscosity. The non linear relation between peak stress of CNT and magnetic field intensity is σp(B, η) = σ0 ± α(B-B0) where σ0 is the peak stress at B = B0 , η is the fluid viscosity, parameter α depends on properties of the MR fluid and B0 is an optimum magnetic field for which peak stress is maximum or minimum depending on the fluid viscosity.
Graphene is assembled into a three dimensional structure called graphene foam. The graphene foam is infiltrated with polymer and study the detailed compressive behavior of graphene foam and graphene foam/PDMS at different strains of 20, 40, 60 and 70%. The maximum stress and energy absorption capability of graphene foam/PDMS is six times higher than the graphene foam. Also the graphene foam/PDMS is highly stable and reversible for 100 cycles at strains of 30 and 50%. The mechanical behavior of CNT, graphene foam, CNT/PDMS and graphene foam/PDMS is compared. Among all the foams, graphene foam/PDMS has shown the highest elastic modulus as compared to other foams. This behavior can be attributed to the wrinkles formation during the growth of graphene and a coupling between PDMS and interfacial interactions of graphene foam. Therefore it suggests potential applications for dampers, cushions and electronic packaging.
Furthermore, the interaction between nanoparticles and polymer in a novel architecture composed of PDMS and iron oxide nanoparticles is studied. The load bearing capacity of uniform composites enhanced by addition of nanoparticles, reaching to a maximum to 1.5 times of the PDMS upon addition of 5wt.% of nanoparticles, and then gradually decreased to 1/6th of PDMS upon addition of 20wt.% of nanoparticles. On the other hand, the load bearing capacity of architectured composites at high strains (≥40%) monotonically increased with addition of nanoparticles in the pillars.
|
99 |
Substituição do alumínio pelo compósito de poliamida no suporte do coxim motorSilva, Leandro Cardoso da 27 January 2014 (has links)
Made available in DSpace on 2016-03-15T19:36:41Z (GMT). No. of bitstreams: 1
Leandro Cardoso da Silva.pdf: 4262718 bytes, checksum: ac43795cdc56049895a5038a95097702 (MD5)
Previous issue date: 2014-01-27 / Mounts are considered structural parts. Generally, mounts utilize metals such as aluminum and steel. These metals have high fatigue strength and its degradation temperature transmitted
by the engines is very small. This work aimed to study the replacement of the aluminum mounts engine by glass fiber reinforced polyamide composite in order to reduce the mass.
Polyamide reinforced with fiberglass is the choice that offers the best compromise of a recyclable material, with adequate thermal and fatigue resistance. The composite used was the commercial polyamide PA66 with 0%, 30%, 35%, 50% glass fiber. This study will focus mainly on the fatigue properties of the composite at temperatures of engine operation. The fatigue tests of the composite with glass fiber additions were performed on flexure specimens at 120°C. The fatigue behavior of the composite was analyzed using the staircase method. The results obtained in fatigue tests showed that the polyamide with 50% glass fiber has the lowest deflection. The observations of the fracture surfaces of the tested specimens were made by Scanning Electron Microscopy (SEM). These observations by SEM showed an excellent adhesion of glass fiber in the polyamide. Analyzes will also be conducted by simulation using the Finite Element Method (FEM) from fatigue results and the conditions of use of the component. The comparison by the FEM of the mounts manufactured of glass fiber reinforced polyamide composite and of aluminum alloy indicated similar results with respect to stress
levels. The fatigue tests results and of the simulation by finite element method showed a good possibility of substitution of the aluminum alloy by glass fiber reinforced polyamide composite in the mounts, with a reduction in weight of 0.2 kg (32%). / Os coxins são considerados dentro das classificações automobilísticas como peças estruturais. Geralmente, os coxins utilizam metais como o alumínio e o aço em seus suportes. Esses
metais oferecem grande resistência à fadiga e sua degradação na temperatura transmitida pelos motores é muito pequena. Devido à necessidade de diminuir a massa e reduzir o custo,
este trabalho teve como objetivo estudar a substituição do suporte de alumínio do coxim do motor pelo compósito de poliamida reforçado com fibra de vidro. O compósito de poliamida é a escolha que melhor oferece o compromisso de um material reciclável, com resistência térmica e à fadiga, devido às suas propriedades mecânicas serem comparáveis às do alumínio.
O compósito utilizado foi à poliamida comercial PA 6.6 com 0%, 30%, 35%, 50% de fibra de vidro. Este estudo focará principalmente nas propriedades em fadiga do compósito nas
temperaturas de trabalho e nas análises de simulação decorrentes das propriedades obtidas e das condições de utilização do componente. Os ensaios de fadiga do compósito de poliamida com adições de porcentagens variadas de fibra de vidro foram executados em corpos de prova do tipo de flexão a 120°C. O comportamento em fadiga do compósito foi analisado
utilizando-se o método staircase. As observações das superfícies de fratura dos corpos de prova ensaiados foram feitas por microscopia eletrônica de varredura e evidenciaram a
excelente aderência da poliamida na fibra de vidro. Os resultados obtidos nos ensaios de fadiga, esforços máximos e esforços excepcionais permitiram concluir que o compósito de poliamida com 50% de fibra de vidro apresenta a menor deflexão. A comparação pelo Método de Elementos Finitos do suporte do coxim do motor em compósito de poliamida com reforço
de fibra de vidro e da liga de alumínio indicou, de uma maneira geral, resultados similares com relação aos níveis de tensão. Contudo, os valores de deflexão apresentaram valores
sistematicamente maiores no compósito. Os resultados dos ensaios mostram um bom comportamento do compósito de poliamida, dando indícios sobre a viabilidade de utilização
na substituição da liga de alumínio, com uma redução em massa de 0,2 kg (32%).
|
100 |
Engineering Bioactive And Multifunctional Graphene Polymer Composites for Bone Tissue RegenerationKumar, Sachin B January 2016 (has links) (PDF)
The growing incidences of orthopedic problems globally have created a huge demand for strong bioactive materials for bone tissue engineering. Over the years, studies have shown chemical, physical, and mechanical properties of biomaterials influence the cellular interactions at the material-tissue interface, which subsequently controls biological response to materials. Strong biomaterials with surface properties that actively direct cellular response hold the key for engineering the next generation orthopedic implants. With its unique properties graphene can be used to reinforce poly (ε-caprolactone) (PCL) to prepare strong and bioactive polymer nanocomposites for bone tissue regeneration. The thesis entitled ―Engineering bioactive and multifunctional graphene polymer composites for bone tissue regeneration” systematically studies the effect of different chemically functionalized and metal-graphene hybrid nanoparticles in PCL composites for bone tissue engineering. The thesis comprises of seven chapters. Chapter 1 is an outline review on the impact of graphene and graphene derived particles to prepare supporting substrates for tissue regeneration and the associated cell response to multifunctional graphene substrate. This chapter discusses how cells interact with different graphene based particles and the interplay between cells performance and multifunctional properties of graphene based substrates.
Chapter 2 describes the role, if any, of the functionalization of graphene on mechanical properties, stem cell response and bacterial biofilm formation. PCL composites of graphene oxide (GO), reduced GO (RGO) and amine-functionalized GO (AGO) were prepared at different filler contents (1%, 3% and 5%). Although the addition of the nanoparticles to PCL markedly increased the storage modulus, this increase was higher for GO and AGO than with RGO. In vitro cell studies revealed that the AGO and GO particles significantly increased human mesenchymal stem cell (hMSC) proliferation. AGO was most effective in augmenting stem cell osteogenesis leading to mineralization. Bacterial studies revealed that interaction with functionalized GO induced bacterial cell death due to membrane damage which was further accentuated by amine groups in AGO. The synergistic effect of oxygen containing functional groups and amine groups on AGO-reinforced composites renders the optimal combination of improved modulus, favorable stem cell response and biofilm inhibition desired for orthopaedic applications. In Chapter 3, toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as spacer and incorporated in PCL at different fractions. GO_PEI significantly promoted proliferation and formation of focal adhesions in hMSCs on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to 90% increase in alkaline phosphatase activity and mineralization over neat PCL with 5% filler content and was 50% better than GO. Remarkably, 5% GO_PEI was as potent as soluble osteo-inductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_PEI augment stem cell differentiation. GO_PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, in contrast to using labile biomolecules, GO_PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials for fabricating orthopedic devices for fracture fixation and tissue engineering.
Chapter 4 describes the preparation of hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and its advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) nanoparticles were synthesized by
facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200 – 300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared incorporating RGO_Sr particles in PCL. The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare scaffolds with osteoinductive property. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.
Chapter 5 discusses the use of hybrid graphene-silver particles (RGO_Ag) to reinforce PCL and compared with PCL/RGO and PCL/Ag composites containing RGO and silver nanoparticles (AgNPs), respectively. RGO_Ag hybrid particles were well dispersed in the PCL matrix unlike the RGO and AgNPs due to enhanced exfoliation. RGO_Ag led to 77 % increase in the modulus of PCL and provided a conductive network for electron transfer. Electrical conductivity increased four orders of magnitude from 10-11 S/cm to 10-7 S/cm at 5 wt % filler that greatly exceeded the improvements with the use of RGO and AgNP in PCL. RGO_Ag particles reinforced in PCL showed sustained release of silver ions from the PCL matrix unlike the burst release from PCL/Ag. PCL/RGO_Ag and PCL/RGO composites were non-toxic to hMSCs and supported osteogenic differentiation unlike the PCL/Ag composites which were highly toxic at ≥3% filler content. The PCL/RGO_Ag composites exhibited good antibacterial effect due to a combination of silver ion release from the AgNPs and the mechanical rupture induced by the RGO in the hybrid nanoparticles. Thus, the synergistic effect of Ag and RGO in the PCL matrix uniquely yielded a multifunctional material for use in implantable biomedical devices and tissue engineering. Chapter 6 presents investigation of potential differences in the biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Results showed that osteoblast response to graphene in polymer nanocomposites is markedly altered between 2D substrates and 3D scaffold due to the roughness induced by the sharp edges of graphene at the surface in 3D but not in 2D. Osteoblast organized into aggregates in 3D scaffolds in contrast to more well spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D scaffolds compared to 2D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route.
Chapter 7 summarizes the important results and future directions of the work. This chapter provides general conclusions arising from this study, and makes suggestions for future work designed to provide a greater understanding of the in vivo response in terms of bio-distribution of the released functionalized graphene from the scaffold or substrate must be assessed with special attention on their accumulation or excretion.
|
Page generated in 0.041 seconds