Spelling suggestions: "subject:"more"" "subject:"core""
351 |
Development of Fast Activation Method using Microwave-Induced Plasma for Preparation of High-Surface-Area Activated Carbon / 高表面積活性炭合成のためのマイクロ波プラズマを活用した迅速賦活法の開発Kuptajit, Purichaya 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23517号 / 工博第4929号 / 新制||工||1769(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 佐野 紀彰, 教授 宮原 稔, 教授 河瀬 元明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
352 |
Study of wave-induced seabed response around twin pipelines in sandy seabed through laboratory experiments and numerical simulationsZhai, Y., Zhang, J., Guo, Yakun, Tang, Z., Zhang, T. 22 March 2022 (has links)
Yes / Wave-seabed-pipelines interaction is of critical importance in the design of submarine pipelines. Previous studies mainly focus on investigating the characteristics of flow fields and hydrodynamics around a single pipeline. In this study, laboratory experiments and numerical simulations have been performed to examine the effect of burial depth and space between the centers of twin pipelines on the wave-seabed-twin pipelines interaction subject to waves. In the mathematical model, the Volume-Averaged Reynolds-Averaged Navier-Stokes (VARANS) equations are used to describe the wave motion in the fluid domain, while the seabed domain is described by using the Biot's poro-elastic theory. Numerical models are validated using these experimental measurements and available relevant experimental data. Experimental and numerical results indicate that the burial depth and relative position of twin pipelines can significantly affect the wave-averaged flow velocity field and the pore-water pressure distribution as well as effective stress.
|
353 |
The Effects Of Non-Plastic and Plastic Fines On The Liquefaction Of Sandy SoilsPolito, Carmine Paul 20 January 2000 (has links)
The presence of silt and clay particles has long been thought to affect the behavior of a sand under cyclic loading. Unfortunately, a review of studies published in the literature reveals that no clear conclusions can be drawn as to how altering fines content and plasticity actually affects the liquefaction resistance of a sand. In fact, the literature contains what appears to be contradictory evidence. There is a need to clarify the effects of fines content and plasticity on the liquefaction resistance of sandy soils, and to determine methods for accounting for these effects in engineering practice.
In order to help answer these questions, a program of research in the form of a laboratory parametric study intended to clarify the effects which varying fines content and plasticity have upon the liquefaction resistance of sandy sands was undertaken. The program of research consisted of a large number of cyclic triaxial tests performed on two sands with varying quantities of plastic and non-plastic fines. The program of research also examined the applicability of plasticity based liquefaction criteria and the effects of fines content and plasticity on pore pressure generation. Lastly, a review of how the findings of this study may affect the manner in which simplified analyses are performed in engineering practice was made.
The results of the study performed are used to clarify the effects of non-plastic fines content and resolve the majority of the inconsistencies in the literature. The effects of plastic fines content and fines plasticity are shown to be different than has been previously reported. The validity of plasticity based liquefaction criteria is established, the mechanism responsible for their validity is explained, and a new simplified criteria proposed. The effects of fines content and plasticity on pore pressure generation are discussed, and several recommendations are made for implementing the findings of this study into engineering practice. / Ph. D.
|
354 |
Wave Induced Vertical Pore Pressure Gradients at Sandy BeachesFlorence, Matthew Benedict Skaanning 08 June 2022 (has links)
Predicting sediment transport at sandy beaches is a significant challenge in civil engineering owing to the variability in hydrodynamic, morphological, and geotechnical properties within a site and across multiple sites. Additionally, there are difficulties in measuring in-situ properties, and challenges in identifying and quantifying the different relevant driving and resisting forces. These challenges are further exacerbated in the intertidal zone where the addition of infiltration-exfiltration, wave run-up and run-down, bore collapse, cyclic emergence and submergence of sediments, interactions between standing waves and incident bores, and other processes must be considered. Among these many processes, pore pressure gradients within sandy beach sediments affect sediment transport by reducing the sediment's effective stress to zero (this process is called liquefaction). Despite the known importance of these pressure gradients with respect to sediment transport, there has been little field evidence of the role that these pore pressure gradients have on sediment transport, how they relate to the hydrodynamic properties, and their inclusion into predictive sediment transport equations. This study is based on field measurements of hydrodynamic and geotechnical properties, as well as pore pressure gradients during storm and non-storm conditions at sandy beaches in the intertidal zone. From the analysis of these field measurements, it was found that (1) liquefying pressure gradients are likely to develop in sediments that are rapidly inundated during storm conditions; (2) the magnitude of pore pressure gradients is related to the asymmetry of the pressure gradient and can occur with shoreward-directed near bed velocities; and (3) during non-storm conditions, pressure gradients that often do not exceed liquefaction criteria occurred more (less) frequently during a time period where erosion occurred in large (small) quantities, indicating that small non-liquefying pore pressure gradients may facilitate sediment transport. The results of this study demonstrate that current methods of scour calculations must include effects of pore pressure gradients to reduce error. Additionally, from this work it was found that sediment transport can be directed shoreward under momentary liquefaction. Finally, the results of this study show that sediment pore pressure gradients are related to wave skewness, spatial group steepness, and temporal group steepness which may aid modelling of pore pressure gradients. / Doctor of Philosophy / The transport of sediment particles (in this case, sand grains at beaches) is difficult to predict because of the many different governing processes that can be hard to measure, may be hard to relate to erosion or sediment accumulation specifically, and the variability in sediment and flow properties (grain size, fluid velocity, and others) at a specific location and across different locations. Storms, like hurricanes, tropical storms, and tsunamis, can drastically change the expected water properties (like water depth, wave height, and wave period), and the effects of water pressure within the sand bed. When a wave moves across the sand it causes a change in the water pressure that is within the sand. This water pressure is not the same throughout the sand with depth. When the gradient, or the difference between the water pressure at two different vertical locations, is large enough, the sand behaves like a fluid (like quicksand) and becomes easier to move, this process is called liquefaction. Even though previous work has shown that these pressure gradients (and the resulting liquefaction) is important for sediment transport, there have been few field measurements demonstrating their impact on sediment transport and how these gradients (and the resulting liquefaction) relate to wave and sand properties. This study presents field measurements of pressure gradients, wave and sediment properties, and sediment transport events during both storm and non-storm conditions. From these field measurements, it was shown that (1) during an extreme storm event, pressure gradients that liquefy the sediment are likely to occur on sediments that are not normally subjected to waves; (2) liquefying pressure gradients can occur when waves arrive at the beach, which may cause sediment to be moved shoreward; and (3) during non-storm conditions, pressure gradients that do not liquefy the sand occurred frequently during a sediment transport event, suggesting that these smaller pressure gradients may contribute to sediment transport by reducing the effective weight of the sediment. This work can be used to further understand the behavior of sediment pore pressure gradients, their relation to hydrodynamic properties, and how they influence sediment transport allowing for better predictions of sediment transport, beach nourishment calculations, and the design of coastal structures.
|
355 |
Analysis of the Physiochemical Interactions of Recycled Materials in ConcreteLowry, Michael Donovan 18 January 2023 (has links)
This thesis broadly addresses the issue of materials sustainability in the production of Portland cement concrete. Two methods are presented, both aimed at achieving more sustainable concrete through the use of waste and recycled materials. The first method involves utilizing reclaimed asphalt pavement (RAP) as an aggregate in structural concrete, and the second method involves utilizing waste quarry fines as partial replacement of Portland cement in concrete mixes.
Many efforts have been made in recent years to justify the use of RAP aggregates in concrete. All previous efforts appear to unanimously report a reduction in concrete performance with varying proportions of RAP usage. The poor performance of RAP aggregates in concrete is attributed mainly to a larger, more porous interfacial transition zone (ITZ) and to the cohesive failure of the asphalt. It is hypothesized that the detrimental impact on the ITZ is attributable to organic compounds leached from the asphalt in the high pH pore solution. This study proves the presence of organic compounds in the pore solution and demonstrates that there is an apparent retardation of cement hydration. This study also attempted to pretreat the RAP in a sodium hydroxide (NaOH) solution to pre-leach the organic compounds. The pretreatment demonstrated that organic compounds were leached and that NaOH modified the asphalt surface chemistry. However, only a marginal improvement in compressive strength was observed by completing the pretreatment.
Replacement of Portland cement by filler products is a practice aimed at reducing the carbon footprint of concrete, such as is common with Type IL Portland limestone cement. This study investigates the impact of replacing cement with seven different quarry fines materials. The quarry fines were used to replace cement at 5% to 20% by volume in either cement paste or mortar samples that were then analyzed for various physicochemical properties. It was found that all the quarry fines had detrimental impact on the hydration kinetics of cement pastes. The inclusion of quarry fines was also found to cause varying degrees of reduction in mortar compressive strength. While further analyses of the quarry fines are required, quarry fines 2, 5 and 7 did display encouraging signs to suggest the potential for use as a filler material in blended cements. / Master of Science / This thesis broadly addresses the issue of sustainability in the cement and concrete industry. Sustainability is a significant problem for the cement and concrete industry due to the large amount of carbon emissions produced in the manufacturing process of Portland cement. One method to reduce the carbon footprint of concrete is to use recycled aggregates, and reclaimed asphalt pavement (RAP) is investigated in this thesis as a recycled aggregate option. Previous studies have shown that the use of RAP in concrete results in poor mechanical performance when compared to conventional concrete. In this thesis, the RAP was pretreated by soaking it in sodium hydroxide (NaOH) to see if any improvement is noted. It was determined that the pretreatment resulted in marginal improvements in concrete performance. Another method to reduce the carbon footprint of concrete is through the use of substitutions of Portland cement. In this thesis, quarry fines from around Virginia were investigated for potential as substitutive material. Quarry fines are a by-product from quarrying operations and are often considered a waste material because they have limited applications. This study analyzed the performance of cementitious materials prepared with various substitutive percentages of quarry fines and found that, in general, the inclusion of quarry fines resulted in a decrease of mechanical performance. In total, seven quarry fines were tested and only two showed potential for use as a substitution in Portland cement concrete. These two investigations are essential in reaching the goal of reducing the carbon footprint of the cement and concrete industry.
|
356 |
Performance Evaluation of Epoxy-Coated Reinforcing Steel and Corrosion Inhibitors in a Simulated Concrete Pore Water SolutionPyc, Wioleta A. 14 February 1998 (has links)
Three epoxy-coated reinforcing steel (ECR) types removed from job sites, one shipped directly from the coater's plant, three commercial corrosion inhibitors, and one ECR plus a corrosion inhibitor were evaluated as reinforcing steel corrosion protection systems against chloride induced corrosion. The three corrosion inhibitors were calcium nitrite, an aqueous mixture of esters and amines, and a mixture of alcohol and amine. The ECR was tested in two groups, 0% and 1% coating damage. Corrosion protection performance was evaluated by the amount of visually observed blister surface area, for the ECR, and corroded surface area, for the tested corrosion inhibitors.
Results of the ECR testing demonstrated that coating debondment and corrosion of ECR is directly related to the amount of damage present in the coating, as well as coating thickness. For the bare steel tested with and without corrosion inhibitors, the results showed that corrosion increases with increasing chloride concentrations. Corrosion inhibition characteristics were demonstrated only by the calcium nitrite corrosion inhibitor.
A corrosion protection evaluation test was developed for concrete corrosion inhibitor admixtures. The test solution is a simulated concrete pore water. Corrosion is accelerated by evaluating the temperature to field conditions of 40 C. The test consists of a 7 day pretreatment period followed by a 90 day test period. The corrosive sodium chloride is added to the solution containing the bare or epoxy-coated reinforcing steel specimens after the 7 day pretreatment period. In addition, the solution is periodically saturated with oxygen. / Master of Science
|
357 |
Transient Seepage Analysis for Levees and Dams: Numerical and Monitoring ApproachesWalshire, Lucas Adam 03 May 2024 (has links)
An investigation into the transient impacts of flood loadings on earthen embankments was conducted. Two embankments were instrumented and monitored over a period of four years. One of these embankments was a levee located along the Mississippi River just north of Cairo, Illinois. The other embankment was part of a catchment basin at the Engineer Research and Development Center located in Vicksburg, MS. Tensiometer and porous block sensors were used to monitor the pore water pressures in the embankments. It was found that when measuring the field soil water retention, tensiometers were more responsive than porous block sensors at low suctions; although, at shallower depths, the tensiometer performance was limited during periods of extended drying. It was shown that during the start of flooding, pore water pressures in the embankment soils were near −10 kPa at depths less than 2 m, which was greater than the normally assumed hydrostatic conditions. An investigation into flood hydrographs collected from across the United States showed that flood durations could be hundreds of days long. These hydrographs were collected over a period of 10 years. It was found that the recorded peak flood stage exceeded the major flood stage 11% of the time. An uncouple transient seepage model of a 2015 Mississippi River flood event that occurred at the Cairo levee showed that an uncoupled model could simulate the field measurements; however, the material properties that resulted in the most accurate simulation differed from those measured in the laboratory. Soil water retention characteristics of the embankment soils were assessed, and it was found that laboratory measured soil water retention curves could be used to bracket field measurements. Slope stability analyses were performed as a proxy to assessing the progression of the wetting front in the levees. Accounting for the increase in shear strength due to the presence of matric suction resulted in minimal impacts to stability factors of safety for levee embankments during flood loadings. The results of this investigation will help to improve the reliability of transient seepage analyses and provides guidance for future embankment monitoring investigations. / Doctor of Philosophy / An investigation into the movement of flood water through flood control embankments was conducted. Typically, analysis of this phenomenon is performed independent of the effects of time. For this investigation, the impacts of time were considered. When considering the effects of time dependent loadings, an initial distribution of water pressures must be considered. Typical assumptions regarding these distributions were investigated using four years of sensor measurements from two embankments. These measurements were also used to investigate appropriate material properties when considering saturated and unsaturated soil properties necessary for these analyses. Results show that typical assumptions may not be appropriate regarding initial water pressure distributions. Additionally, recommendations for assigning material properties were provided and it was found that these types of analyses can simulate flood loadings, but a range of material properties must be explored to understand the full range of performance. The impact of these results will lead to better predictions of embankment performance during flood loadings.
|
358 |
Multiphysics Transport in Heterogeneous Media: from Pore-Scale Modeling to Deep LearningWu, Haiyi 21 May 2020 (has links)
Transport phenomena in heterogeneous media play a crucial role in numerous engineering applications such as hydrocarbon recovery from shales and material processing. Understanding and predicting these phenomena is critical for the success of these applications. In this dissertation, nanoscale transport phenomena in porous media are studied through physics-based simulations, and the effective solution of forward and inverse transport phenomena problems in heterogeneous media is tackled using data-driven, deep learning approaches.
For nanoscale transport in porous media, the storage and recovery of gas from ultra-tight shale formations are investigated at the single-pore scale using molecular dynamics simulations. In the single-component gas recovery, a super-diffusive scaling law was found for the gas production due to the strong gas adsorption-desorption effects. For binary gas (methane/ethane) mixtures, surface adsorption contributes greatly to the storage of both gas in nanopores, with ethane enriched compared to methane. Ethane is produced from nanopores as effectively as the lighter methane despite its slower self-diffusion than the methane, and this phenomenon is traced to the strong couplings between the transport of the two species in the nanopore. The dying of solvent-loaded nanoporous filtration cakes by a purge gas flowing through them is next studied. The novelty and challenge of this problem lie in the fact that the drainage and evaporation can occur simultaneously. Using pore-network modeling, three distinct drying stages are identified. While drainage contributes less and less as drying proceeds through the first two stages, it can still contribute considerably to the net drying rate because of the strong coupling between the drainage and evaporation processes in the filtration cake.
For the solution of transport phenomena problems using deep learning, first, convolutional neural networks with various architectures are trained to predict the effective diffusivity of two-dimensional (2D) porous media with complex and realistic structures from their images. Next, the inverse problem of reconstructing the structure of 2D heterogeneous composites featuring high-conductivity, circular fillers from the composites' temperature field is studied. This problem is challenging because of the high dimensionality of the temperature and conductivity fields. A deep-learning model based on convolutional neural networks with a U-shape architecture and the encoding-decoding processes is developed. The trained model can predict the distribution of fillers with good accuracy even when coarse-grained temperature data (less than 1% of the full data) are used as an input. Incorporating the temperature measurements in regions where the deep learning model has low prediction confidence can improve the model's prediction accuracy. / Doctor of Philosophy / Multiphysics transport phenomena inside structures with non-uniform pores or properties are common in engineering applications, e.g., gas recovery from shale reservoirs and drying of porous materials. Research on these transport phenomena can help improve related applications. In this dissertation, multiphysics transport in several types of structures is studied using physics-based simulations and data-driven deep learning models.
In physics-based simulations, the multicomponent and multiphase transport phenomena in porous media are solved at the pore scale. The recovery of methane and methane-ethane mixtures from nanopores is studied using simulations to track motions and interactions of methane and ethane molecules inside the nanopores. The strong gas-pore wall interactions lead to significant adsorption of gas near the pore wall and contribute greatly to the gas storage in these pores. Because of strong gas adsorption and couplings between the transport of different gas species, several interesting and practically important observations have been found during the gas recovery process. For example, lighter methane and heavier ethane are recovered at similar rates. Pore-scale modeling are applied to study the drying of nanoporous filtration cakes, during which drainage and evaporation can occur concurrently. The drying is found to proceed in three distinct stages and the drainage-evaporation coupling greatly affects the drying rate.
In deep learning modeling, convolutional neural networks are trained to predict the diffusivity of two-dimensional porous media by taking the image of their structures as input. The model can predict the diffusivity of the porous media accurately with computational cost orders of magnitude lower than physics-based simulations. A deep learning model is also developed to reconstruct the structure of fillers inside a two-dimensional matrix from its temperature field. The trained model can predict the structure of fillers accurately using full-scale and coarse-grained temperature input data. The predictions of the deep learning model can be improved by adding additional true temperature data in regions where the model has low prediction confidence.
|
359 |
Characterizing the physical and hydraulic properties of pine bark soilless substratesWolcott, Caroline Courtney 06 November 2023 (has links)
Soilless substrates, such as peat, pine bark, and coir, are widely used as growing media in containerized crops for their favorable characteristics, including low bulk density, balanced air exchange and water retention, disease resistance, and low pH and salinity. However, improper irrigation of these media can have negative outcomes such as root asphyxia, pathogen development, and reduced plant growth. Understanding pore size distributions, water dynamics, and gas diffusivity of these substrates is essential to promote plant growth. The effects of different particle sizes of soilless media on processes such as infiltration, hydraulic conductivity, and gas diffusivity are also not well understood. The characterization of these effects is important for the overall improvement of container crop production.
This thesis presents three studies that aimed to characterize the physical and hydraulic properties of pine bark substrates, both unamended and amended with peat or coir. The first study looked at three substrate types: unamended, unscreened pine bark, peat-amended pine bark, and coir amended pine bark. Three methods were employed to quantify pore distributions: non-equilibrium infiltration measurements, equilibrium water retention characterization, and scanning electron microscopy. We characterized pore distributions during wetting and drainage for the three substrates. Coir-amended bark had the largest water-conducting porosity, highest hydraulic conductivity, and most water retention. Unamended pine bark had the highest microporosity, and the addition of peat and coir lowered macroporosity, with peat having the greater effect. The total porosity inferred from the infiltration method was significantly smaller than that inferred from drainage experiments due to assumptions related to pore shape.
The second study focused on defining hydraulic conductivity and water retention for pine bark substrates of five different particle sizes, <1 mm, 1-2 mm, 2-4 mm, 4-6 mm, and an unscreened fraction. We utilized the same methods from the first study. The resulting data showed that the smallest particle sizes (i.e., <1 mm and 1-2 mm) had the highest hydraulic conductivity and greatest water retention. The three larger sizes had lower hydraulic conductivity and poor water retention, including the unscreened fraction, which more closely followed the results of the 2-4 mm size.
The final study examined gas diffusivity of the five pine bark particle sizes at different moisture levels: 60% moisture content (initial conditions), saturated at the bottom of the sample, near-saturated at the sample bottom, and drained from saturation to container capacity. We used a one-chamber gas diffusion setup to find gas diffusion coefficients (Ds). The results displayed an inverse relationship between Ds values and substrate water content. In addition, the larger particle sizes were less sensitive to changes in water content due to their well-draining large pores.
Proper balance of aeration and water retention is necessary for the success of soilless growing media. Overall, the smaller particle size fractions had the best water retention and hydraulic conductivity rates while the larger fractions had the largest Ds coefficients. This work contributes valuable knowledge on the physical and hydraulic properties of different size fractions of pine bark substrates, which can assist nursery growers in optimizing water usage for sustainable container crop production. / Master of Science / Since the 1950's soilless substrates have been an important resource for growing a variety of fruits, vegetables, flowers, and ornamental plants. Soilless growing media have become more popular choices for containerized plant production compared to natural soils due to improved air exchange, increased disease resistance, and more plants per acre. They are also favored because they help conserve resources, reduce agricultural waste, and minimize transportation requirements as compared to traditional cropping methods. The most popular types of soilless media include peat, coir, compost, and pine bark. In the U.S., pine bark is the main substrate used, as it is renewable and widely available.
Growers still face many issues when using containerized crop production. For example, pine bark is susceptible to water runoff which can cause environmental problems and increase costs from this loss of water and fertilizer. Further characterizing of water and gas dynamics in of pine bark growing media is important for conserving water and fertilizer resources while optimizing plant growth in this container cropping industry. Pore characteristics, aeration, and water movement are key factors of substrates to be described to solve these challenges.
This project aimed to apply soil physics strategies to soilless media, focusing on describing pore sizes, water movement, water holding capacity, and air movement in pine bark substrates. We utilized three methods throughout this study. For the first method, we took infiltration measurements to examine how water moved into the media, while the second utilized controlled drainage experiments to observe how water moved out of the media. The final method was characterizing gas movement through the substrates at different water contents and particle sizes.
The results found showed that the smaller particle sizes and pine bark mixed with peat and coir had increased ability to retain water and allow water movement as compared to the larger particle sizes and unamended pine bark. In contrast, the larger particles had less water retention but improved gas movement. These results could be applied by stacking different particle sizes or mixes over one another could optimize water retention in the top of the container and drainage and gas movement in the bottom of the container. Overall, the application of this work is to create best management practices for growers to be able to balance water retention and gas movement in order to optimize plant growth.
|
360 |
Determining neighbouring aminoacids impact on protein sequencing with nanopores using Molecular DynamicsFreedman, Victor January 2024 (has links)
One focus goal that science always works towards is an understanding of biological structures, with proteins being one of the main research goals. Sequencing proteins is currently a time-exhausting task, so focus is being put on trying to use nanopores in a similar way as in DNA sequencing for proteins. In this report, the neighbouring amino acids in the same peptide as the amino acid being sequenced are varied and the change in ionic current from the pore based on the neighbouring amino acids is analysed. This was done by using Molecular Dynamics program NAMD. A peptide was placed in the center of different silicon nitride pore structures inside a water box with ions and was simulated with an added electric field. The drop in current was checked for 4 different peptide systems and one check for the empty pores. The results presented in the report show that changing the neighbouring amino acids increases the current measured, therefore making the current blocking worse when mixing nearby amino acids. However, the differences are very small and similar amino acids give wildly different values. A larger evaluation with more computational power seems reasonable for a more definitive result.
|
Page generated in 0.0454 seconds