• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 388
  • 71
  • 65
  • 42
  • 20
  • 19
  • 10
  • 7
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 757
  • 123
  • 122
  • 92
  • 79
  • 70
  • 65
  • 60
  • 58
  • 58
  • 55
  • 55
  • 54
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Multiscale factors that control hydrocarbon storage capacity, and successful hydrofracturing and refracturing in mudrocks

Haider, Syed 11 1900 (has links)
Hydrocarbon production from mudrocks (“shales”) is vital to global economic growth and smooth transition to a clean energy infrastructure. The commercial development prospect of a shale play depends on its evolution history over millions of years. Economic hydrocarbon production from shale starts after hydraulic fracturing, that creates a multiscale fracture network leading to an increased overall permeability. The properties of the stimulated rock can be assessed via parameters at different scales (nano-, micro- and macro-scale). Better understanding of these parameters is the key to predicting well productivity and profitability. This work aims to deepen the understanding of the multiscale parameters that define effective hydraulic fracturing. To investigate permeability increase in shales, we start with a model of micro-capillary in contact with nanopores . We show that the nanopores that discharge gas into a fracture network in the source rock significantly increase and extend gas flow into the hydrofractured horizontal wells. We then use a fractal stimulated reservoir volume model to match production histories of 45 Barnett gas wells and to quantify connectivity between the nanopores and the fracture network. This model relies on a source term, ${s}$, and fracture permeability $k_f$ . Our analysis shows that the different degrees of coupling between ${s}$ and $k_f$ create distinctly different types of fracture networks after rock stimulation and impact the well production profiles. We then couple the fractal SRV model with universal scaling $τ − M$ model to simulate production history of 1000 wells each in the Barnett, Marcellus, Haynesville and Eagle Ford shale plays. The analysis shows the coupled effect of stimulated surface area $A$, fracture half-distance, $d$, and the fractal dimension ,$D$, on production and economics of gas production. These parameters define the key differences between different shale plays in the US. Finally, we simulate microfracturing associated with hydrocarbon expulsion in the Tuwaiq Mountain source rock, Saudi Arabia, and propose the pore/microchannel blocking by bitumen/pyrobitumen as a viable mechanism of sustaining the high pore pressure in the source rock for millions of years.
332

Efficient Numerical Design of Porous Media with Target Microstructure and Material Properties

Paisley, Benjamin January 2020 (has links)
No description available.
333

: Inverkan av släntnära portryck på släntstabilitet : En känslighetsanalys av siltslänter längs Ångermanälven

Calming, Katia, Öttenius, Myrna January 2022 (has links)
The stability of natural slopes is goverened by many factors, one of which is the porewater pressure. In this study, a sensitivity analysis has been conducted in GeostudioSLOPE/W to investigate the impact of near-surface pore water pressure on thefactor of safety i silt slopes. The study includes five slopes along Ångermanälven,Sweden, which previously have been investigated within the framework of a slopefailure risk mapping of the area conducted by the Swedish Geotechnical Institute,SGI. The near-surface pore water pressure in the slopes has not successfullybeen measured in this area as the slopes are very high and steep. Calculations ofslope stability done previously by Tyréns instead assumed 1) that the pore waterpressure is zero 1m in from the slope face and 2) that it decreases hydrostatically(10 kPa/m) towards the slope face, and these are the parameters studied in thesensitivity analysis. When the pore water pressure is set to zero at the surface, thefactor of safety is reduced by an average of 7 %. Setting the pore water pressure tozero 2mfrom the surace increases the safety factor by 3%on average. A lower thanhydrostatic (7 kPa/m) pore pressure gradient increases the safety factor by on average2 %. A higher than hydrostatic pore water gradient decreases the safety factorby 16% on average. The results verifies that an increase in near-surface pore waterpressure gives a lower factor of safety and decrease in near-surface pore waterpressure leads to a higher factor of safety. The slopes are generally more sensitiveto destabilizing changes of the near-surface pore water pressure than of those stabilizing.Other factors such as vegetation, cohesion, dilatancy and erosion are notconsidered in this study but likely have a considerable effect on the stability. Whenmodelling the influence of near-surface pore water pressure and other parameters,it is recommended to use a FEM program.
334

Closure of Lilla Bredsjön Tailings Dam : an Evaluation of the Long-Term Dam Safety Measures

Bramsäter, Jenny January 2017 (has links)
The mining industry contributes to enormous amounts of waste all over the world, which places high demands on tailings dams. In Sweden, there are strict regulations regarding the management and treatment of tailings dams, but some dams that were built before these regulations existed still pose a threat to the environment. Lilla Bredsjön in Dalarna, Sweden, is an example of an old tailings dam that has not been treated properly. Boliden, which is the owner of the dam, and the county board of Dalarna are currently in meetings regarding the responsibilities of old polluted sites in Garpenberg, where Lilla Bredsjön is included. This study aims to investigate possible remediation measures of the dams at Lilla Bredsjön in order to achieve long- term stability upon closure of the facility. Lilla Bredsjön is 350 000 m2 large and contains three impoundments; dam 1 to the east, dam 2 to the south and dam 3 to the north. Dam 1 is seven meters at its highest point whereas dam 2 and 3 both are three meters high. All of the dams are classified to a consequence level of 3, meaning that the consequences in case of a failure would be negligible. They are built using the centerline method with impermeable cores of moraine. The tailings are partly covered with sludge mixed with biomass ash, but no proper closure method have been implemented. A geotechnical investigation was conducted to obtain more information about the geometry, construction and foundation of each dam. It could be observed that dam 1 consisted of a moraine core and support fill, both constructed using the Christmas tree principle. Dam 2 consisted of a coarse and fine filter in the upstream part of the dam, whereas the rest of the dam consisted of a moraine core. Dam 3 consisted of tailings and a moraine core, and was like dam 1 also constructed using the Christmas tree principle. The downstream slopes of all dams are moreover very steep with slope angles of approximately 34o. Seepage and stability calculations were therefore performed in the software GeoStudio. In GeoStudio, two different analysis tools were used; SEEP/W to calculate seepage and SLOPE/W to calculate slope stability. Four hydraulic load cases were analyzed in the calculations: present conditions, flooded conditions, potential maximum seepage and present conditions with lower permeability of the tailings. The result shows that all of the dams are unstable in their present con- ditions, both with original and lower permeability of the tailings, as well as at flooded conditions. The required safety factor is however fulfilled at potential maximum seepage. The stability highly depends on the pore pressure inside the dams, which in turn depends on the choice of closure method. Based on the result from the stability calculations it can be concluded that if a dry cover is chosen as the closure method, it will probably be enough to reinforce the existing dams to achieve long-term stability. If, on the other hand, a raised groundwater level is chosen, more extensive solutions in terms of for example completely new impoundments directly downstream of the existing ones are most likely needed. Before a decision regarding the closure method is taken, it is hence very difficult to come to a conclusion regarding suitable remediation measures of the dams. / Gruvindustrin bidrar med enorma mängder avfall över hela världen, vilket ställer höga krav på gruvdammar. I Sverige finns det strikta förordningar gällande hanteringen och efterbehandlingen av gruvdammar, men en del dammar som byggdes innan dessa förordningar existerade utgör fortfarande ett hot mot miljön. Lilla Bredsjön i Dalarna är ett exempel på en gammal gruvdamm som inte blivit efterbehandlad tillräckligt. Boliden, som äger dammen, har möten med Länsstyelssen Dalarna angående ansvarsförhållanden gällande gamla förorenade områden i Garpenberg där även Lilla Bredsjön ingår. Denna studie syftar till att undersöka möjliga efterbehandlingsmetoder av dammarna vid Lilla Bredsjön för att uppnå långtidsstabilitet i samband med nedläggning av anläggningen. Lilla Bredsjön är 350 000 m2 stor och består av tre uppdämningar; damm 1 i öst, damm 2 i söder och damm 3 i norr. Damm 1 är sju meter som högst medan damm 2 och 3 båda är tre meter höga. Samtliga dammar är klassificerade till konsekvensklass 3, vilket betyder att konsekvenserna i händelse av ett dammbrott är försumbara. Dammarna är byggda med uppåtmetoden och har tätkärnor av morän. Magasinet är delvis täckt med slam utblandat med biobränsleaska, men ingen riktig efterbehandling har utförts. En geoteknisk undersökning genomfördes för att erhålla mer information om geometrin, konstruktionen och grundläggningen av varje damm. Det observerades att damm 1 består av en tätkärna av morän samt stödfyllning som båda konstruerades med julgransprincipen. Damm 2 består av ett grov- och finfilter i uppströmsdelen av dammen medan resten av dammen består av en tätkärna av morän. Damm 3 består av anrikningssand och en tätkärna av morän, och var liksom damm 1 konstruerad med julgransprincipen. Nedströmsslänterna på alla dammar är väldigt branta med en vinkel på ungefär 34o. Genomströmnings- och stabilitetsberäkningar genomfördes därför i programmet GeoStudio. I GeoStudio användes två olika verktyg; SEEP/W för att beräkna genomströmning och SLOPE/W för att beräkna släntstabilitet. Fyra olika hydrauliska belastningsfall analyserades i beräkningarna: normalfallet, överdämning, dimensionerat läckage och normalfallet med lägre permeabilitet på anrikningssanden. Resultatet visar på att samtliga dammar är instabila i deras nuvarande skick, beräknat på normalfallet med både ursprunglig och lägre permeabilitet på anrikningssanden, samt vid överdämning. Den erforderliga säkerhetsfaktorn är däremot uppfylld vid dimensionerat läckage. Stabiliteten är starkt beroende av portrycket inuti dammarna, vilket i sin tur är beroende av vilken efterbehandlingsmetod som väljs för magasinet. Baserat på resultatet från stabilitetsberäkningarna kan det konstateras att om torrtäckning väljs som efterbehandlingsmetod så räcker det förmodligen med att förstärka nuvarande dammar för att uppnå långtidsstabilitet. Om, å andra sidan, en förhöjd grundvattennivå väljs behövs med största sannolikhet en mer omfattande lösning, till exempel helt nya dammar direkt nedströms de nuvarande. Innan ett beslut gällande efterbehandlingsmetod av magasinet har tagits är det alltså väldigt svårt att dra en slutsats gällande den mest lämpliga efterbehandlingsmetoden av dammarna.
335

Water and Air Quality Performance of a Reciprocating Biofilter Treating Dairy Wastewater

Henneman, Seppi Matthew 01 March 2011 (has links) (PDF)
ABSTRACT Water and Air Quality Performance of a Reciprocating Biofilter Treating Dairy Wastewater Seppi Matthew Henneman Agricultural non-point source pollution is the leading water quality problem in surface water and the second leading problem in ground water in the US. Among the contaminants, nutrients (such as nitrogen, phosphorus, potassium) can be transported from agricultural fields when cropland is not managed properly. In California, dairy manure application to cropland has become tightly regulated with the goal of decreasing such nutrient pollution. Dairies unable to balance their manure nutrient supply with cropland application area may benefit from a nitrogen removal technology. One such technology is the reciprocating biofilter, known as the ReCip® technology. A pilot-scale ReCip® unit was installed at the Cal Poly dairy to evaluate its treatment efficacy, in particular for nitrogen removal, when treating wastewater from flush dairies. This pilot-scale system was the first application of the ReCip® technology to dairy wastewater, and recently it was found to be effective for removal of ammonium, total nitrogen, and biochemical oxygen demand (BOD). In the ReCip®, wastewater is repeatedly pumped back and forth between two gravel-filled basins. This reciprocation creates two treatment environments: an aerobic environment, which promotes reactions such as nitrification and BOD oxidation, and an anoxic/anaerobic environment, which promotes reactions such as denitrification of nitrate into nitrogen gas and methanogenesis. At Cal Poly, the ReCip® treated storage lagoon water, and ReCip® effluent containing nitrate was returned to the lagoon, possibly contributing to odor control. Emission of air pollutants is a concern about dairy waste in general (volatile organic compounds, hydrogen sulfide, methane, etc.) and for nitrification-denitrification systems in particular (nitrous oxide). In the present work, the first detailed air emission study was conducted on ReCip®. Emissions of air pollutants were measured with flux chambers during different seasons, and, simultaneously, the water quality within the pore volume of the gravel beds was measured to explore whether pore water quality correlated to air emissions. These air emissions studies were performed within a yearlong study of overall ReCip® treatment performance. Water quality constituents measured were pH, alkalinity, temperature, dissolved oxygen (DO), total ammonia nitrogen (TAN), soluble nitrogen, soluble non-purgeable organic carbon, nitrite, and nitrate. During the submerged phase of the reciprocation cycle, pore water DO generally declined from 1-2 mg/L to <0.1 mg/L, while TAN declined and nitrate accumulated, although total nitrogen also declined due to denitrification. The extent of denitrification was correlated to influent BOD loading. The average removals by the ReCip® were 93% TAN, 61% CBOD5, 74% TKN, and 57% TSS. A simple CBOD5 removal model was developed that described and predicted CBOD5 ­removal in the system. Key air pollutants emitted by the ReCip® and their annual mean concentrations were nitrous oxide (0.74 ppm), ammonia (0.15 ppm), and methane (3.85 ppm). The air emission potential of the lagoon water influent was compared to that of the ReCip® effluent. The decreases in emission potential were 82% for ammonia, 93% for methane, and 99% for hydrogen sulfide. The average masses emitted (g emitted/kg loaded into system) by the ReCip® were 1.7 g N2O/kg N, 0.15 g NH3/kg N, 2.1 g CH4/kg CBOD5, 1.0 g ethanol/kg CBOD5,and 0.004 g H2S/kg CBOD5.
336

Wave induced silty seabed response around a trenched pipeline

Gao, Y., Zhang, J., Tong, L., Guo, Yakun, Lam, Dennis 18 March 2022 (has links)
Yes / Most previous studies on seabed liquefaction around offshore pipelines focused on investigating the wave-induced pore pressure variation in sandy seabed, while limited studies have been conducted for silty seabed. In this study, laboratory experiments are conducted to investigate wave-induced pore pressure within silty bed around the buried or partially/fully backfilled pipeline. Results show that residual pore pressure is the dominant factor that causes the liquefaction in silty soil. For buried pipeline, liquefaction first occurs at the pipeline bottom, then propagates upwards and downwards vertically. Comparing with the buried pipeline, the liquefaction potential is reduced when the pipeline is placed in a trench. To protect pipeline from liquefaction, backfill is recommended. Experiments show that the residual pore pressure significantly decreases as backfill depth increases. Fully backfilled pipeline is the best choice for silty seabed. Furthermore, backfill material with coarser particle size than native soil provides better protection for pipeline. In this study, there is no residual pore pressure around the pipeline periphery for three backfill soils (d50 = 0.15 mm; 0.3 mm; and 0.5 mm) tested. Results indicate that for the range of this experimental study, d50 = 0.15 mm is the best backfill material that provides the most protection for the underneath pipeline. / National Postdoctoral Program for Innovative Talents granted by China Postdoctoral Science Foundation (Grant No. BX20190105) and the Fundamental Research Funds for the Central Universities (Grant No. B200202062).
337

Computer simulation of viral-assembly and translocation

Mahalik, Jyoti Prakash 01 May 2013 (has links)
We investigated four different problems using coarse grained computational models : self-assembly of single stranded (ss) DNA virus, ejection dynamics of double stranded(ds) DNA from phages, translocation of ssDNA through MspA protein pore, and segmental dynamics of a polymer translocating through a synthetic nanopore. In the first part of the project, we investigated the self-assembly of a virus with and without its genome. A coarse-grained model was proposed for the viral subunit proteins and its genome (ssDNA). Langevin dynamics simulation, and replica exchange method were used to determine the kinetics and energetics of the self-assembly process, respectively. The self-assembly follows a nucleation-growth kind of mechanism. The ssDNA plays a crucial role in the self-assembly by acting as a template and enhancing the local concentration of the subunits. The presence of the genome does not changes the mechanism of the self-assembly but it reduces the nucleation time and enhances the growth rate by almost an order of magnitude. The second part of the project involves the investigation of the dynamics of the ejection of dsDNA from phages. A coarse-grained model was used for the phage and dsDNA. Langevin dynamics simulation was used to investigate the kinetics of the ejection. The ejection is a stochastic process and a slow intermediate rate kinetics was observed for most ejection trajectories. We discovered that the jamming of the DNA at the pore mouth at high packing fraction and for a disordered system is the reason for the intermediate slow kinetics. The third part of the project involves translocation of ssDNA through MspA protein pore. MspA protein pore has the potential for genome sequencing because of its ability to clearly distinguish the four different nucleotides based on their blockade current, but it is a challenge to use this pore for any practical application because of the very fast traslocation time. We resolved the state of DNA translocation reported in the recent experimental work . We also investigated two methods for slowing down the translocation process: pore mutation and use of alternating voltage. Langevin dynamics simulation and Poisson Nernst Planck solver were used for the investigation. We demonstrated that mutation of the protein pore or applying alternating voltage is not a perfect solution for increasing translocation time deterministically. Both strategies resulted in enhanced average translocation time as well as the width of the translocation time distribution. The increase in the width of the translocation time distribution is undesired. In the last part of the project, we investigated the applicability of the polyelectrolyte theory in the computer simulation of polyelectrolyte translocation through nanopores. We determined that the Debye Huckel approximation is acceptable for most translocation simulations as long as the coarse grained polymer bead size is comparable or larger than the Debye length. We also determined that the equilibrium translocation theory is applicable to the polyelectrolyte translocation through a nanopore under biasing condition. The unbiased translocation behavior of a polyelectrolyte chain is qualitatively different from the Rouse model predictions, except for the case where the polyelectrolyte is very small compared to the nanopore. .
338

Repeated Loading of Normally Consolidated Clay

Greenwood, John Robert 09 1900 (has links)
The effects of repeated loading on a normally consolidated,saturated silty clay, are compared to the effects of sustained loading and standard strength tests on the same material. Attention is given to axial strains and pore water pressures generated under the different loading conditions. / Thesis / Master of Engineering (ME)
339

Micro-nano scale pore structure and fractal dimension of ultra-high performance cementitious composites modified with nanofillers

Wang, J., Wang, X., Ding, S., Ashour, Ashraf F., Yu, F., Lv, X., Han, B. 11 May 2023 (has links)
Yes / The development of ultra-high performance cementitious composite (UHPCC) represents a significant advancement in the field of concrete science and technology, but insufficient hydration and high autogenous shrinkage relatively increase the pores inside UHPCC, in turn, affecting the macro-performance of UHPCC. This paper, initially, optimized the pore structure of UHPCC using different types and dimensions of nanofillers. Subsequently, the pore structure characteristics of nano-modified UHPCC were investigated by the mercury intrusion porosimeter method and fractal theory. Finally, the fluid permeability of nano-modified UHPCC was estimated by applying the Katz-Thompson equation. Experimental results showed that all incorporated nanofillers can refine the pore structure of UHPCC, but nanofillers with different types and dimensions have various effects on the pore structure of UHPCC. Specifically, CNTs, especially the thin-short one, can significantly reduce the porosity of UHPCC, whereas nanoparticles, especially nano-SiO2, are more conducive to refine the pore size. Among all nanofillers, nano-SiO2 has the most obvious effect on pore structure, reducing the porosity, specific pore volume and most probable pore radius of UHPCC by 31.9%, 35.1% and 40.9%, respectively. Additionally, the pore size distribution of nano-modified UHPCC ranges from 10-1nm to 105nm, and the gel pores and fine capillary pores in the range of 3-50nm account for more than 70% of the total pore content, confirming nanofillers incorporation can effectively weaken pore connectivity and induce pore distribution to concentrate at nanoscale. Fractal results indicated the provision of nanofillers reduces the structural heterogeneity of gel pores and fine capillary pores, and induces homogenization and densification of UHPCC matrix, in turn, decreasing the UHPCC fluid permeability by 15.7%-79.2%. / The authors thank the funding supported from the National Science Foundation of China (51978127, 52178188 and 51908103), the China Postdoctoral Science Foundation (2022M720648 and 2022M710973) and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039). / The full-text of this article will be released for public view at the end of the publisher embargo on 11 May 2024.
340

Excess pore water pressure generation in fine granular materials under cyclic loading -A laboratory study

Do, Tan Manh January 2021 (has links)
Abstract Excess pore water pressure can be generated in subgrades of both railway and pavement sub-structures under cyclic loading caused by heavy traffic. When saturated subgrades are subjected to cyclic loading, excess pore water pressures accumulate over time which then could lead to migration of particles into overlying layers. The migration of subgrade soil particles to the upper layers would lead to clogging of pores and reducing the upper layers' drainage capacity. Both excess pore water pressure accumulation and migration of fine particles could negatively affect the long-term performance and service life of the sub-structures and eventually may lead to failure. Understanding the mechanism of both excess pore water pressure and migration of fine particles under cyclic loading is, therefore, essential for not only designing but also further proposing efficient and economical maintenance methods. The main objectives of this research are to (1) investigate excess pore water pressure generation in fine granular materials under cyclic loading and (2) evaluate migration of fine granular materials into overlying layers under cyclic loading.  A series of undrained cyclic triaxial tests were performed to study the excess pore water pressure generation in fine granular materials. Two types of fine granular materials, i.e., railway sand (natural granular material) and tailings (artificial granular material), were selected for this investigation. The cyclic characteristics of these materials, e.g., accumulated strain and excess pore water pressure, were evaluated in terms of number of cycles and applied cyclic stress ratios (CSR). As a result, axial strain and excess pore water pressure accumulated over time due to cyclic loading. However, its accumulations were significantly dependent on CSR values and material types. Finally, a relationship between excess pore water pressure and accumulated strain of the fine granular materials was discovered based on all outputs from the undrained cyclic triaxial tests (both tailings and railway sand samples).  In order to evaluate the migration of fine granular materials into overlying layers under cyclic loading, a modified large-scale triaxial system was used as a physical model test. Samples prepared for the modified large-scale triaxial system composed of a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer (tailings and railway sand). The quantitative analysis on migration of the fine granular materials was based on the mass percentage and grain size of migrated materials collected at the gravel layer. In addition, the cyclic responses (strain and pore water pressure) were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. There were no migrated sand particles pumped up to the gravel surface, i.e., no mud pumping, after the test terminated. The migrated sand particles were observed and collected at the bottom half of the gravel layer. The total migration rate of the tailing sample was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser ones under cyclic loading. The migrated tailings particles were observed at the surface of the gravel layer after the test ended. It could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test. The findings obtained in this research may provide an additional contribution to the literature dealing with the excess pore water pressure accumulation and its effects on the migration of fine particles under cyclic loading.

Page generated in 0.0444 seconds