Spelling suggestions: "subject:"corous silicon"" "subject:"chorous silicon""
111 |
Le silicium poreux pour les périphéries TRIAC / Porous silicon for TRIAC peripheriesFèvre, Angélique 09 March 2017 (has links)
Ces travaux se sont consacrés à l’étude de l’intégration du silicium poreux au procédé de fabrication des TRIACs. Ce matériau a pour but d’optimiser les structures actuelles du point de vue de leur périphérie. Son utilisation en tant que terminaison de jonction pourrait ouvrir la voie à une diminution de la taille des puces et donc augmenter la quantité de puces par wafer. Le silicium poreux est intégré aux périphéries des TRIACs par gravure électrochimique dans du silicium faiblement dopé n (30−40 Ω.cm). Pour assurer le bon déroulement de la réaction et ce dans un cadre industriel, la technique d’injection de trous depuis une jonction p+/n est étudiée. L’influence des paramètres d’anodisation dans ces conditions est analysée. Une double couche composée de silicium macroporeux rempli de silicium mésoporeux et surmonté d’une couche de nucléation a été obtenue. Le silicium poreux est localisé dans la périphérie des TRIACs. Des mesures de tenue en tension d’une jonction p/n présentant cette terminaison à base de silicium poreux ont été évaluées et ont montrées des tenues en tension dix fois supérieures à la même structure sans silicium poreux. Toutefois, des perspectives d’amélioration sont proposées car ces résultats restent insuffisants. / The integration of porous silicon to TRIACs process is studied. The aim of this material is to optimize current structures dedicated to electrical insulation of those components namely the periphery. The use of porous silicon as junction termination could allow the increase of the number of die per wafer. Porous silicon is integrated to TRIAC peripheries by electrochemical etching in low doped n type silicon (30−40 Ω.cm). Hole injection from a p+/n junction is studied to determine the performance of the reaction as part of an industrial microelectronic process. The reaction parameters are studied in those conditions. A double layer consisting in a macroporous layer fully filled with mesoporous silicon and surmounted by a nucleation layer, is obtained. Porous silicon formation is limited to TRIAC peripheries. Voltage withstand of a p/n junction with porous silicon termination shows values ten times higher than the same structure without this insulator. Nevertheless, prospects of improvement are suggested because those results are insufficient.
|
112 |
Desarrollo de biosensores fotónicos basados en membranas de silicio porosoMartín Sánchez, David 02 September 2019 (has links)
[ES] El desarrollo de los biosensores está permitiendo llevar a cabo análisis bioquímicos cada vez más rápidos, de manera mucho más sencilla y utilizando una menor cantidad de muestra. Esto está dando lugar a aplicaciones en las que se monitorizan parámetros de manera continua y autónoma, aumentando la eficiencia y reduciendo los costes. El tema principal de esta Tesis ha sido el desarrollo y la evaluación de biosensores que se basan en técnicas de transducción óptica, fabricados en silicio poroso, un material nanoestructurado que puede llegar a alcanzar una gran sensibilidad. El trabajo ha consistido en el estudio de la fabricación y la caracterización de membranas de silicio poroso obtenidas a partir de substratos tipo p de baja resistividad. Para ello se ha desarrollado un modelo matemático realista que permite simular el comportamiento del transductor y calcular sus parámetros experimentales. Gracias a esto, se han estudiado propiedades del material como el efecto térmico, llevando a caracterizar el efecto termo-óptico del silicio poroso en el rango infrarrojo del espectro. Además, se ha analizado la infiltración de la muestra en el transductor con el objetivo de mejorar su funcionamiento. Por este motivo, se han examinado diferentes morfologías de poros y se ha implementado un flujo activo durante el sensado, en el cual la sustancia a analizar fluye a través de la membrana porosa, resolviendo problemas de rellenado del sensor y mezclado con otras sustancias. / [CA] El desenvolupament dels biosensors està permetent realitzar anàlisis bioquímics cada vegada més ràpids, de manera molt més senzilla i utilitzant una menor quantitat de mostra. Això està donant lloc a aplicacions en les quals es monitoritzen paràmetres de manera contínua i autònoma, augmentant l'eficiència i reduint els costos. El tema principal d'aquesta Tesis ha sigut el desenvolupament i l'avaluació de biosensors basats en tècniques de transducció òptica, fabricats en silici porós, un material nanoestructurat que pot arribar a aconseguir una gran sensibilitat. El treball ha consistit en l'estudi de la fabricació i la caracterització de membranes de silici porós obtingudes a partir de substrats tipus p de baixa resistivitat. Per a fer-ho, s'ha desenvolupat un model matemàtic realista que permet simular el comportament del transductor i calcular els seus paràmetres experimentals. Gràcies a això, s'han estudiat propietats del material com l'efecte tèrmic, el que ha permés caracteritzar l'efecte termo-òptic del silici porós en el rang infraroig de l'espectre. A més, s'ha analitzat la infiltració de la mostra en el transductor amb l'objectiu de millorar el seu funcionament. Per aquest motiu, s'han examinat diferents morfologies de porus i s'ha implementat un flux actiu durant el sensat, en el qual la substància a analitzar fluïx a través de la membrana porosa, resolent problemes d'ompliment del sensor i mesclat amb altres substàncies. / [EN] The development of biosensors is leading to faster and simpler analyses of biochemical samples, using them in lower quantities. Over the last years, these advances have allowed the emergence of applications where parameters can be monitored continuously and autonomously, increasing the efficiency and reducing the costs. This Thesis has focused on the development and evaluation of biosensors based on optical transducers, which are fabricated with porous silicon, a nanostructured material that is able to reach a high sensitivity. In this work, the fabrication and characterization of porous silicon membranes using heavily doped p-type silicon wafers have been studied. A realistic mathematical model has been developed in order to simulate the transducer's behavior and calculate the experimental parameters. This has led to the study of physical properties such as the thermal effect, where we were able to characterize the thermo-optic coefficient in the near-infrared range. Moreover, the penetration of the sample into the structure has been analyzed. For this purpose, several pore morphologies were examined and an active flow has been implemented during the sensing experiments, where the substance of interest flows through the porous membrane, to solve problems such as the partial filling of the sensor or the mixture of different substances during the experiments. / Martín Sánchez, D. (2019). Desarrollo de biosensores fotónicos basados en membranas de silicio poroso [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125695
|
113 |
Development and Optimization of Experimental Biosensing Protocols Using Porous Optical TransducersMartínez Pérez, Paula 02 September 2021 (has links)
[ES] Los biosensores son dispositivos analíticos con aplicabilidad en diferentes campos y con numerosas ventajas frente a otros métodos analíticos convencionales, como son el uso de pequeños volúmenes de muestra y reactivos, su sensibilidad y su rápida respuesta, sin necesidad de pretratamiento de la muestra, equipos caros o personal especializado. Sin embargo, se trata de un campo de investigación relativamente nuevo en el que todavía queda mucho camino por andar.
Esta Tesis doctoral pretende aportar un granito de arena a este campo de conocimiento mediante el estudio del potencial de diferentes materiales porosos como transductores para el desarrollo de biosensores ópticos con respuesta en tiempo real y sin marcajes. Los materiales propuestos van desde aquellos artificialmente sintetizados, como silicio poroso (SiP), nanofibras (NFs) poliméricas o membranas poliméricas comerciales, hasta materiales naturales con propiedades fotónicas que todavía no habían sido explotadas para el sensado, como son los exoesqueletos de biosílice de diatomeas. Todos ellos tienen en común la simplicidad en su obtención, evitando costosos y laboriosos procesos de nanofabricación. Para su estudio, se analizará su respuesta óptica y, en aquellos casos en los que ésta permita llevar a cabo experimentos de detección, se desarrollarán estrategias para su biofuncionalización y su implementación en experimentos de biosensado.
En el caso del SiP y las NFs se han optimizado los parámetros de fabricación para obtener una respuesta óptica adecuada que permita su interrogación. A continuación, se ha llevado a cabo su biofuncionalización empleando métodos covalentes y no covalentes, así como diferentes bioreceptores (aptámeros de ADN y anticuerpos) para estudiar su potencial y sus limitaciones como biosensores. En el caso de las membranas comerciales y el exoesqueleto de sílice de diatomeas, se ha caracterizado su respuesta óptica y se han llevado a cabo experimentos de sensado de índice de refracción para estudiar su sensibilidad. Así mismo, se ha desarrollado un método de funcionalización de la superficie del exoesqueleto de diatomeas basado en el uso de polielectrolitos catiónicos.
Como resultado, se ha demostrado el potencial tanto de NFs para el desarrollo de biosensores, como el de membranas comerciales para sensores cuya aplicación no requiera una elevada sensibilidad pero sí un bajo coste. Además, se ha puesto de manifiesto el gran potencial del exoesqueleto de diatomeas para el desarrollo de sensores basados en su respuesta óptica. Por el contrario, las limitaciones encontradas en el desarrollo de biosensores basados en SiP han evidenciado la necesidad de un estudio riguroso y la optimización de la estructura de materiales porosos previamente a ser usados en (bio)sensado. / [CA] Els biosensors són dispositius analítics amb aplicabilitat en diferents camps i amb nombrosos avantatges enfront d'altres mètodes analítics convencionals, com són l'ús de xicotets volums de mostra i reactius, la seua sensibilitat i la seua ràpida resposta, sense necessitat de pretractament de la mostra, equips cars o personal especialitzat. No obstant això, es tracta d'un camp d'investigació relativament nou en el qual encara queda molt camí per fer.
Aquesta Tesi doctoral pretén aportar el seu òbol a aquest camp de coneixement mitjançant l'estudi del potencial de diferents materials porosos com a transductors per al desenvolupament de biosensors òptics amb resposta en temps real i sense marcatges. Els materials proposats van des d'aquells artificialment sintetitzats, com a silici porós (SiP), nanofibras (NFs) polimèriques o membranes polimèriques comercials, fins a materials naturals amb propietats fotòniques que encara no havien sigut explotades per al sensat, com són els exoesquelets de biosílice de diatomees. Tots ells tenen en comú la simplicitat en la seua obtenció, evitant costosos i laboriosos processos de nanofabricació. Per al seu estudi, s'analitzarà la seua resposta òptica i, en aquells casos en els quals aquesta permeta dur a terme experiments de detecció, es desenvoluparan estratègies per a la seua biofuncionalizació i la seua implementació en experiments de biosensat.
En el cas del SiP i les NFs s'han optimitzat els paràmetres de fabricació per a obtenir una resposta òptica adequada que permeta la seua interrogació. A continuació, s'ha dut a terme la seua biofuncionalizació emprant mètodes covalents i no covalents, així com diferents bioreceptors (aptàmers d'ADN i anticossos) per a estudiar el seu potencial i les seues limitacions com a biosensors. En el cas de les membranes comercials i l'exoesquelet de sílice de diatomees, s'ha caracteritzat la seua resposta òptica i s'han dut a terme experiments de sensat d'índex de refracció per a estudiar la seua sensibilitat. Així mateix, s'ha desenvolupat un mètode de funcionalizació de la superfície de l'exoesquelet de diatomees basat en l'ús de polielectròlits catiònics.
Com a resultat, s'ha demostrat el potencial tant de NFs per al desenvolupament de biosensors, com el de membranes comercials per a sensors amb una aplicació que no requerisca una elevada sensibilitat però sí un baix cost. A més, s'ha posat de manifest el gran potencial de l'exoesquelet de diatomees per al desenvolupament de sensors basats en la seua resposta òptica. Per contra, les limitacions trobades en el desenvolupament de biosensors basats en SiP han evidenciat la necessitat d'un estudi rigorós i l'optimització de l'estructura dels materials porosos prèviament a ser usats en (bio)sensat. / [EN] Biosensors are analytical devices with application in diverse fields and with several advantages relative to other conventional methods, such as the use of small volumes of sample and reagents, their sensitivity and their fast response, without the need of the sample pretreatment, expensive equipments or specialised technicians. Nevertheless, this is a relatively new research field in which there is a long way to go yet.
This doctoral Thesis aims at doing its bit to this field of knowledge by studying the potential of different porous materials as transducers for the development of real-time and label-free optical biosensors. The proposed materials range from those artificially synthesised, such as porous silicon (pSi), polymeric nanofibres (NFs) or commercial polymeric membranes, to natural materials with photonic properties that had not been exploited for sensing yet, such as biosilica exoskeletons of diatoms. All of them have in common its simple production, avoiding expensive and laborious nanofabrication processes. For their study, their optical response will be analysed and, in those cases in which such optical response allows performing detection experiments, strategies for their biofunctionalisation and their implementation in biosensing experiments will be developed as well.
Regarding pSi and NFs, the fabrication parameters were optimised to get a suitable optical response for their interrogation. Afterwards, their surface functionalisation was carried out by covalent and non-covalent methods, as well as different bioreceptors (DNA aptamers and antibodies), to study their potential and their constraints as biosensors. Concerning commercial membranes and the biosilica exoskeleton of diatoms, their optical response was characterised and refractive index sensing experiments were carried out to study their sensitivity. Additionally, a biofunctionalisation method for the surface of the diatoms exoskeleton was developed based on the use of cationic polyelectrolytes.
As a result, it was demonstrated the potential of NFs for the development of biosensors, as well as the potential of commercial membranes for developing sensors for an application that does not require a high sensitivity but a low cost. Furthermore, the great potential of biosilica exoskeleton of diatoms for the development of sensors based on their optical response has been revealed. By contrast, the constraints found in the development of pSi illustrate the importance of an accurate study and optimisation of porous materials structure before using them for (bio)sensing. / Martínez Pérez, P. (2021). Development and Optimization of Experimental Biosensing Protocols Using Porous Optical Transducers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172541
|
114 |
Elaboration et caractérisation de structures Silicium-sur-Isolant réalisées par la technologie Smart Cut™ avec une couche fragile enterrée en silicium poreux / Elaboration and characterization of Silicon-On-Insulator structures made by the Smart Cut™ technology with a weak embedded porous silicon layerStragier, Anne-Sophie 17 October 2011 (has links)
Au vu des limitations rencontrées par la miniaturisation des circuits microélectroniques, l’augmentation de performances des systèmes repose largement aujourd’hui sur la fabrication d’empilements de couches minces complexes et innovants pour offrir davantage de compacité et de flexibilité. L’intérêt grandissant pour la réalisation de structures innovantes temporaires, i.e. permettant de réaliser des circuits sur les deux faces d’un même film, nous a mené à évaluer les potentialités d’une technologie combinant le transfert de films minces monocristallins, i.e. la technologie Smart Cut™, et un procédé de de porosification partielle du silicium afin de mettre au point une technologie de double report de film monocristallin. En ce sens, des substrats de silicium monocristallin ont été partiellement porosifiés par anodisation électrochimique. La mise en œuvre de traitements de substrats partiellement poreux a nécessité l’emploi de techniques de caractérisation variées pour dresser une fiche d’identité des couches minces poreuses après anodisation et évaluer l’évolution des propriétés de ces couches en fonction des différents traitements appliqués. Les propriétés chimiques, structurales et mécaniques des couches de Si poreux ont ainsi été étudiées via l’utilisation de différentes techniques de caractérisation (XPS-SIMS, AFM-MEB-XRD, nanoindentation, technique d’insertion de lame, etc.). Ces études ont permis d’appréhender et de décrire les mécanismes physiques mis au jeu au cours des différents traitements et de déterminer les caractéristiques {porosité, épaisseur} optimales des couches poreuses compatibles avec les séquences de la technologie proposée. La technologie Smart Cut™ a ainsi été appliquée à des substrats partiellement porosifiés menant à la fabrication réussie d’une structure temporaire de type Silicium-sur-Isolant avec une couche de silicium poreux enterrée. Ces structures temporaires ont été « démontées » dans un second temps par collage polymère ou collage direct et insertion de lame menant au second report de film mince monocristallin par rupture au sein de la couche porosifiée et donc fragile. Les structures fabriquées ont été caractérisées pour vérifier leur intégrité et leurs stabilités chimique et mécanique. Les propriétés cristallines du film mince de Si monocristallin, reporté en deux temps, ont été vérifiées confirmant ainsi la compatibilité des structures fabriquées avec des applications microélectroniques telles que les applications de type « Back-Side Imager » nécessitant une implémentation de composants sur les deux faces du film. Ainsi une technologie prometteuse et performante a pu être élaborée permettant le double report de films minces monocristallins et à fort potentiel pour des applications variées comme les imageurs visibles ou le photovoltaïque. / As scaling of microelectronic devices is confronted from now to fundamental limits, improving microelectronic systems performances is largely based nowadays on complex and innovative stack realization to offer more compaction and flexibility to structures. Growing interest in the fabrication of innovative temporary structures, allowing for example double sided layer processing, lead us to investigate the capability to combine one technology of thin single crystalline layer transfer, i.e. the Smart Cut™ technology, and partial porosification of silicon substrate in order to develop an original double layer transfer technology of thin single crystalline silicon film. To this purpose, single crystalline silicon substrates were first partially porosified by electrochemical anodization. Application of suitable treatments of porous silicon layer has required the use of several characterization methods to identify intrinsic porous silicon properties after anodization and to verify their evolution as function of different applied treatments. Chemical, structural and mechanical properties of porous silicon layers were studied by using different characterization techniques (XPS-SIMS, AFM-MEB-XRD, nanoindentation, razor blade insertion, etc.). Such studies allowed comprehending and describing physical mechanisms occurring during each applied technological steps and well determining appropriated {porosity, thickness} parameters of porous silicon layer with the developed technological process flow. The Smart Cut™ technology was successfully applied to partially porosified silicon substrates leading to the fabrication of temporary SOI-like structures with a weak embedded porous Si layer. Such structures were then “dismantled” thanks to a second polymer or direct bonding and razor blade insertion to produce a mechanical rupture through the fragile embedded porous silicon layer and to get the second thin silicon film transfer. Each fabricated structure was characterized step by step to check its integrity and its chemical and mechanical stabilities. Crystalline properties of the double transferred silicon layer were verified demonstrating the compatibility of such structures with microelectronic applications such as “Back-Side Imagers” needing double-sided layer processing. Eventually, a promising and efficient technology has been developed to allow the double transfer of thin single crystalline silicon layer which presents a high potential for various applications such as visible imagers or photovoltaic systems.
|
115 |
Μέθοδοι και διατάξεις απευθείας ηλεκτροακουστικής μετατροπής για ψηφιακό ήχο / Methods and implementations for direct electroacoustic transduction of digital audioΚοντομίχος, Φώτιος 06 October 2011 (has links)
Η παρούσα διδακτορική διατριβή εστιάστηκε στη μελέτη συστημάτων ακουστικής εκπομπής για απευθείας αναπαραγωγή ψηφιακού ήχου. Η ερευνητική διαδικασία βασίστηκε στον προσδιορισμό και βελτίωση των δυνατοτήτων δύο διαφορετικών υλοποιήσεων ακουστικής μετατροπής: i. Ένα υβριδικό πρωτότυπο θερμοακουστικό στοιχείο και ii. Μια συστοιχία 32 ηλεκτροδυναμικών μεγαφώνων σχεδιασμένη, ώστε να αναπαράγει ψηφιακά ηχητικά σήματα.
Η θερμοακουστική μετατροπή προσφέρει μια εναλλακτική τεχνική για υλοποιήσεις ακουστικών στοιχείων. Είναι βασισμένη στο μετασχηματισμό των διακυμάνσεων της θερμικής ενέργειας σε ακουστικό κύμα που προκαλούνται από τη ροή του ηλεκτρικού σήματος ήχου σε μια συσκευή στερεάς κατάστασης που λειτουργεί χωρίς τη χρήση οποιουδήποτε κινούμενου τμήματος ή μηχανισμού. Η υλοποίηση αυτής της τεχνικής ηχητικής αναπαραγωγής, μελετάται με τη χρήση ενός πρωτότυπου μετατροπέα ο οποίος αναπτύχθηκε πάνω σε πλακέτα κρυσταλλικού πυριτίου (silicon wafer). H απόδοση της συσκευής αυτής βελτιώνεται ιδίως όσον αφορά στις μη γραμμικές παραμορφώσεις που προσθέτει ο φυσικός μηχανισμός κατά την αναπαραγωγή των ακουστών συχνοτήτων. Για τις ανάγκες της ερευνητικής μελέτης κατασκευάσθηκε εξειδικευμένο στάδιο οδήγησης, ενώ επίσης αναπτύχθηκαν εργαλεία που προσομοιώνουν την απόδοση αυτών των συσκευών.
Οι ψηφιακές συστοιχίες μεγαφώνων (DLAs) σήμερα βασίζονται σε μικρούς μετατροπείς κινούμενου πηνίου για την ανακατασκευή ακουστικών σημάτων από ροές ψηφιακού ήχου. Τα σημαντικά ζητήματα απόδοσης για τα συστήματα αυτά αναλύονται από την παρούσα διατριβή, με στόχο να ερμηνευθεί η απόκριση συχνότητας και οι ρυθμοί των διακριτών (on/off) μεταβάσεων των μεγαφώνων, εξαιτίας των ψηφιακών σημάτων. Λεπτομερείς προσομοιώσεις που επιτρέπουν την πραγματοποίηση συγκρίσεων για μια πανομοιότυπη συστοιχία 32 μετατροπέων η οποία τροφοδοτείται από αναλογικά σήματα, σε παρόμοια τοποθέτηση και ενεργοποίηση των στοιχείων. Οι μελέτες αυτές παράγουν πρωτότυπα αποτελέσματα για τις απαιτήσεις σε ηλεκτρική ενέργεια και την ευαισθησία της συστοιχίας, καταλήγοντας στο συμπέρασμα ότι αυτά τα δύο συστήματα επιτυγχάνουν συγκρίσιμες επιδόσεις. / The present Phd Thesis is focused on the study of acoustic transduction systems for direct digital audio signal emission. The research process was based on the evaluation and optimization of the behavior of two different implementations: i. A novel hybrid thermoacoustic device and ii. A loudspeaker array consisting of 32 moving coil speakers designed for digital audio reproduction.
Thermoacoustic transduction offers an alternative technique for transducer implementations, based on the transformation of thermal energy fluctuations into sound after the direct application of the electrical audio signal on a solid state device which operates without the use of any moving/mechanical components. Here, an implementation of this sound generation technique is studied based on a prototype developed on silicon wafer and its performance is optimised, especially with respect to non-linear distortions within the audio band. For the purposes of the research study a specialised driving circuit was constructed and also the appropriate tools were developed to simulate the performance of these devices.
Digital loudspeaker arrays currently are based on small moving-coil speakers to reconstruct acoustic signals out of binary audio streams. An overview of significant performance issues for such systems is given here to explain frequency response and speaker discrete transition rates due to the digital data. Detailed simulations provided comparisons for a 32-speaker DLA with similar arrangements of speakers driven by analogue signals. These tests produce novel results for electrical power requirements and array sensitivity, concluding that these two systems achieve comparable performance.
|
Page generated in 0.0566 seconds