Spelling suggestions: "subject:"portunus"" "subject:"vortaunus""
1 |
A study of the reproductive biology of the haole crab, Portunus sanguinolentus (Herbst) (Brachyura: Portunidae)Ryan, Edward Parsons January 1965 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii, 1965. / Bibliography: leaves [185]-194. / ix, 194 l illus., tables, mounted photos
|
2 |
An electrophysiological and chemical investigation of the female sex pheromone of the crab Portunus sanguinolentus (Herbst)Christofferson, Jay Peter January 1970 (has links)
Typescript. / Bibliography: leaves 86-95. / ix, 95 l illus., tables
|
3 |
The Population Genetic Structure of Portunus Pelagicus in Australian WatersEsezmis@murdoch.edu.au, Ertug Sezmis January 2004 (has links)
This thesis describes the results of an investigation into the population genetic structure
of the blue swimmer crab, Portunus pelagicus, in Australian waters. P. pelagicus is an
Indo-West Pacific species, with adults and juveniles that inhabit sheltered benthic
coastal environments and a planktonic phase (of modest duration) in its life cycle.
The investigation was done by examining the patterns of variation at six microsatellite
loci and in a 342 bp portion of the cytochrome oxidase subunit I (COI) gene in the
mitochondrial DNA in samples of Portunus pelagicus from a total of 16 different
assemblages/waterbodies. Overall, the samples were collected from throughout the
geographical range of this species in Australian waters, i.e. from the western seaboard,
from the eastern seaboard, from Darwin on the north coast and from South Australia on
the south coast. The samples sizes ranged from 4 to 57 individuals, depending on the
sample and the genetic assay. The population genetic structure of P. pelagicus was
analysed from both a traditional population structure perspective and from a
phylogeographical and historical demography perspective.
The traditional assessment of the population genetic structure of Portunus pelagicus
indicates that this species exhibits a significant amount of genetic heterogeneity in
Australian waters (e.g. FST for microsatellite data = 0.098; ¥èST for COI data = 0.375 and
¥ÕST for COI data = 0.492). This assessment also indicates that P. pelagicus exhibits
varying degrees of genetic heterogeneity within and between geographical regions in
Australian waters, as follows. (1) The genetic compositions of the samples from the
different coastlines (i.e. north, south, east and west) invariably showed statistically
significant differences for at least two microsatellite loci, although the differences
between the samples from the eastern seaboard, Darwin and those from the western
seaboard to the north of Port Denison were not as great as those within the western
seaboard samples or within South Australian samples. (2) The genetic compositions of
the samples from the assemblages on the eastern seaboard of Australia, which ranged
from Mackay (21¨¬06¡ÇS) to Port Stephens (32¡Æ40¡ÇS), were essentially homogeneous. (3)
The samples from the assemblages on the western seaboard of Australia, which ranged
from Broome (17¡Æ58¡ÇS) to Geographe Bay (33¡Æ35¡ÇS), exhibited significant levels of
genetic heterogeneity. Furthermore, those from south of Port Denison formed a highly
distinctive (but not invariant) group compared to those from elsewhere. (4) The samples
from South Australia were also highly genetically distinctive compared to those from
elsewhere, although they also showed significant heterogeneity amongst themselves.
The above findings were more or less suggested by both the microsatellite and COI
markers, although the former generally provided a higher resolution picture of the
population structure of P. pelagicus than did the latter.
The main findings of the investigation into the phylogeography and recent demographic
history of Portunus pelagicus in Australian waters were as follows. (1) A phylogeny
constructed from COI sequence variation was shallow, with the lineages showing varied
geographical distributions. (2) The results of a nested clade analysis of this variation
indicate that range expansion has been a predominant influence on the historical
demography of P. pelagicus in Australian waters. (3) The samples from the
assemblages on the western seaboard to the south of Port Denison contained low levels
of genetic diversity, a sub-set of the diversity present in the samples from lower latitude
sites on the western seaboard, and microsatellite-based evidence of having coming from
assemblages that have undergone a bottleneck (or founder effect) followed by an
expansion in size. (4) The samples from the assemblages in South Australia contained
low levels of genetic diversity, phylogenetic affinities with samples from the eastern
seaboard, and microsatellite-based evidence of having coming from assemblages that
have undergone a bottleneck (or founder effect) followed by an expansion in size.
The two major interpretations to stem from the results of this investigation are as
follows. (1) Overall, Portunus pelagicus has undergone a recent (in an evolutionary
sense) range expansion, from a single source, within Australian waters. At a finer-scale,
this species appears to have colonised south-western Australia from a lower latitude
site(s) on the western seaboard and probably colonised South Australia from the
southern margins of its range on the eastern seaboard. Regardless, there has been
limited penetrance of genetic variation into temperate waters on the western seaboard
and into South Australia, presumably due one or more of the barriers to gene flow listed
below. (2) P. pelagicus experiences significant restrictions to gene flow within its
present-day geographical range in Australian waters due to (i) geographic distance per
se; (ii) discontinuities in the distribution of the sheltered coastal environments; (iii)
hydrological barriers to dispersal and (iv) possibly low temperatures in the temperature
margins of the range.
|
4 |
Habitat location and selection by the Sargassum crab Portunus sayi: the role of sensory cuesUnknown Date (has links)
The Sargassum community consists of a unique and idverse assemblage of fauna critical to pelagic food chains. Associated organisms presumably have adaptations to assist in finding Sargassum. This study investigated cues used for habitat location and selection by the Sargassum crab, Portunus sayi. Chemical detection trials were conducted with a two-chamber choice apparatus with Sargassum spp. and Thalassia testudinum as source odors. Visual detection trials (devoid of chemical cues) and habitat selection trials were conducted in which crabs were given a choice of habitats. Results showed that P. sayi respoded to chemical odors from Sargassum spp. Crabs visually located habitats but did not visually distinguish between different habitats. In habitat selection trials, crabs selected Sargassum spp. over artificial Sargassum and T. testudinum. These results suggest that crabs isolated from Sargassum likely use chemoreception from longer distances ; within visual proximity of a potential patch, crabs use both chemical and visual information. / by Lorin E. West. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
5 |
Temperaturbestimmung an IGBTs und Dioden unter hohen Stoßstrombelastungen / Temperature measurement of IGBTs and Diodes under high surge current loadsSimon, Tom 03 June 2015 (has links) (PDF)
Diese Arbeit beschäftigt sich mit drei verschiedenen Temperaturmessmethoden VCE, VGTH sowie über die Messung der thermsichen Impedanz mit 10ms langen Lastimpulsen und vergleicht die Messergebnisse mit zwei Simulatoren. Dabei wird ein Schaltungs- sowie ein Halbleitersimulator verwendet und das bisherige Simulationsmodell angepasst.
|
6 |
Temperaturbestimmung an IGBTs und Dioden unter hohen StoßstrombelastungenSimon, Tom 16 April 2015 (has links)
Diese Arbeit beschäftigt sich mit drei verschiedenen Temperaturmessmethoden VCE, VGTH sowie über die Messung der thermsichen Impedanz mit 10ms langen Lastimpulsen und vergleicht die Messergebnisse mit zwei Simulatoren. Dabei wird ein Schaltungs- sowie ein Halbleitersimulator verwendet und das bisherige Simulationsmodell angepasst.:Aufgabenstellung
Inhaltsverzeichnis
Nomenklatur
Einleitung
1. Grundlagen
1.1. Halbleitermaterialien
1.2. Dioden Grundlagen
1.2.1. pn-Übergang
1.2.2. Temperaturabhängigkeit der Diffusionsspannung des pn-Übergangs
1.2.3. Diodenstrukturen
1.3. IGBT Grundlagen
1.3.1. Funktionsweise und ESB
1.3.2. Statisches Verhalten des IGBTs
1.4. Messtechnische Bestimmung der virtuellen Sperrschichttemperatur
1.4.1. VCE(T)- und VGth(T)-Methode
1.4.2. Temperaturreferenzmessung – Kalibrierkennlinie
1.4.3. Wurzel(t)-Methode
1.5. Simulation der virtuellen Sperrschichttemperatur mittels thermischer Ersatzschaltbilder
1.5.1. Thermische Kenngrößen Rth, Cth
1.5.2. Transiente thermische Impedanz Zth
1.5.3. Ersatzschaltbild – Cauer-Netzwerk
1.6. Simulation der virtuellen Sperrschichttemperatur mittels Halbleitersimulator
1.7. Stoßstromereignisse
2. Vormessungen
2.1. Prüflinge
2.2. Messung der Sperrfähigkeit
2.2.1. Testaufbau – Schaltung
2.2.2. Testergebnisse
2.3. Messung des Ausgangskennlinienfeldes/ Durchlassmessungen
2.3.1. Testaufbau – Schaltung
2.3.2. Testergebnisse
2.4. Messung der Transferkennlinie
2.4.1. Testaufbau – Schaltung
2.4.2. Testergebnisse
2.4.3. Bestimmung des “pinch-off”-Bereiches
2.5. Aufnahme der Kalibrierkennlinien
2.5.1. Testaufbau – Schaltung
2.5.2. Testergebnisse
3. Temperaturbestimmung mittels thermischer Impedanz Zth
3.1. Testaufbau – Schaltung
3.2. Testergebnisse
4. Temperaturbestimmung am Stoßstrommessplatz
4.1. Ermittlung der Halbleitertemperatur nach einem Stoßstromereignis
4.1.1. Anpassung des Stoßstrommessplatzes
4.1.2. Pulsmuster VCE(T)-, VGth(T)-Messung
4.1.3. Testergebnisse
4.2. Ermittlung des Halbleitertemperaturverlaufes während des Stoßstromereignisses
4.2.1. Testaufbau - Schaltung
4.2.2. Pulsmuster VCE(T)-, VGth(T)-Messung
4.2.3. Testergebnisse
5. Simulation der Temperaturverläufe
5.1. Temperatursimulation mittels Halbleitersimulator
5.2. Temperatursimulation mittels Cauer-Netzwerk
5.3. Angepasste Temperatursimulation mittels Cauer-Netzwerk
6. Zusammenfassung und Ausblick
Anhang
Literaturverzeichnis
Selbstständigkeitserklärung
Danksagung
|
Page generated in 0.0251 seconds