Spelling suggestions: "subject:"positronenemission homography."" "subject:"positronenemission lomography.""
351 |
Sigma-1 Receptor Positron Emission Tomography: A New Molecular Imaging Approach Using (S)-(−)-[18F]Fluspidine in GlioblastomaToussaint, Magali, Deutscher-Conrad, Winnie, Kranz, Mathias, Fischer, Steffen, Ludwig, Friedrich-Alexander, Juratli, Tareq A., Patt, Marianne, Wünsch, Bernhard, Schackert, Gabriele, Sabri, Osama, Brust, Peter 20 April 2023 (has links)
Glioblastoma multiforme (GBM) is the most devastating primary brain tumour characterised by infiltrative growth and resistance to therapies. According to recent research, the sigma-1 receptor (sig1R), an endoplasmic reticulum chaperone protein, is involved in signaling pathways assumed to control the proliferation of cancer cells and thus could serve as candidate for molecular characterisation of GBM. To test this hypothesis, we used the clinically applied sig1R-ligand (S)-(−)-[18F]fluspidine in imaging studies in an orthotopic mouse model of GBM (U87-MG) as well as in human GBM tissue. A tumour-specific overexpression of sig1R in the U87-MG model was revealed in vitro by autoradiography. The binding parameters demonstrated target-selective binding according to identical KD values in the tumour area and the contralateral side, but a higher density of sig1R in the tumour. Different kinetic profiles were observed in both areas, with a slower washout in the tumour tissue compared to the contralateral side. The translational relevance of sig1R imaging in oncology is reflected by the autoradiographic detection of tumour-specific expression of sig1R in samples obtained from patients with glioblastoma. Thus, the herein presented data support further research on sig1R in neuro-oncology.
|
352 |
Image Registration for the ProstateFEI, Baowei 29 October 2008 (has links)
No description available.
|
353 |
Positron Emission Tomography Imaging of Hepatocellular Carcinoma with Radiolabeled CholineKuang, Yu 03 April 2009 (has links)
No description available.
|
354 |
Algoritmo de reconstrucción analítico para el escáner basado en cristales monolíticos MINDViewSánchez Góez, Sebastián 17 January 2021 (has links)
[ES] La tomografía por emisión de positrones (PET, del inglés Positron Emission Tomography) es una técnica de medicina nuclear en la que se genera una imagen a partir de la detección de rayos gamma en coincidencia. Estos rayos son producidos dentro de un paciente al que se le inyecta una radiotrazador emisor de positrones, los cuales se aniquilan con electrones del medio circundante. El proceso de adquisición de eventos de interacción, tiene como unidad central el detector del escáner PET, el cual se compone a su vez de un cristal de centelleo, encargado de transformar los rayos gamma incidentes en fotones ópticos dentro del cristal. La finalidad es entonces, determinar las coordenadas de impacto dentro del cristal de centelleo con la mayor precisión posible, para que, a partir de dichos puntos, se pueda reconstruir una imagen.
A lo largo de la historia, los detectores basados en cristales pixelados han representado la elección por excelencia para la la fabricación de escáneres PET. En está tesis se evalúa el impacto en la resolución espacial del escáner PET MINDView, desarrollado dentro del séptimo programa Marco de la Unión Europea No 603002, el cual se basa en el uso de cristales monolíticos. El uso de cristales monolíticos, facilita la determinación de la profundidad de interacción (DOI - del inglés Depth Of Interaction) de los rayos gamma incidentes, aumenta la precisión en las coordenadas de impacto determinadas, y disminuye el error de paralaje que se induce en cristales pixelados, debido a la dificultad para determinar la DOI.
En esta tesis, hemos logrado dos objetivos principales relacionados con la medición de la resolución espacial del escáner MINDView: la adaptación del un algoritmo de STIR de Retroproyección Filtrada en 3D (FBP3DRP - del inglés Filtered BackProjection 3D Reproyected) a un escáner basado en cristales monolíticos y la implementación de un algoritmo de Retroproyección y filtrado a posteriori (BPF - BackProjection then Filtered). Respecto a la adaptación del algoritmo FBP, las resoluciones espaciales obtenidas varían en los intervalos [2 mm, 3,4 mm], [2,3 mm, 3,3 mm] y [2,2 mm, 2,3 mm] para las direcciones radial, tangencial y axial, respectivamente, en el primer prototipo del escáner MINDView dedicado a cerebro. Por otra parte, en la implementación del algoritmo de tipo BPF, se realizó una adquisición de un maniquí de derenzo y se comparó la resolución obtenida con el algoritmo de FBP y una implementación del algoritmo de subconjuntos ordenados en modo lista (LMOS - del inglés List Mode Ordered Subset). Mediante el algoritmo de tipo BPF se obtuvieron valores pico-valle de 2.4 a lo largo de los cilindros del maniquí de 1.6 mm de diámetro, en contraste con las medidas obtenidas de 1.34 y 1.44 para los algoritmos de FBP3DRP y LMOS, respectivamente. Lo anterior se traduce en que, mediante el algoritmo de tipo BPF, se logra mejorar la resolución para obtenerse un valor promedio 1.6 mm. / [CAT] La tomografia per emissió de positrons és una tècnica de medicina nuclear en la qual es genera una imatge a partir de la detecció de raigs gamma en coincidència. Aquests raigs són produïts dins d'un pacient a què se li injecta una radiotraçador emissor de positrons, els quals s'aniquilen amb electrons de l'medi circumdant. El procés de adquición d'esdeveniments d'interacció, té com a unitat central el detector de l'escàner PET, el qual es compon al seu torn d'un vidre de centelleig, encarregat de transformar els raigs gamma incidents en fotons òptics dins el vidre. La finalitat és llavors, determinar les coordenades d'impacte dins el vidre de centelleig amb la major precisió possible, perquè, a partir d'aquests punts, es pugui reconstruir una imatge.
Al llarg de la història, els detectors basats en cristalls pixelats han representat l'elecció per excellència per a la la fabricació d'escàners PET. En aquesta tesi s'avalua l'impacte en la resolució espacial de l'escàner PET MINDView, desenvolupat dins el setè programa Marc de la Unió Europea No 603.002, el qual es basa en l'ús de vidres monolítics. L'ús de vidres monolítics, facilita la determinació de la profunditat d'interacció dels raigs gamma incidents, augmenta la precisió en les coordenades d'impacte determinades, i disminueix l'error de parallaxi que s'indueix en cristalls pixelats, a causa de la dificultat per determinar la DOI.
En aquesta tesi, hem aconseguit dos objectius principals relacionats amb el mesurament de la resolució espacial de l'escàner MINDView: l'adaptació de l'un algoritme de STIR de Retroprojecció Filtrada en 3D a un escàner basat en cristalls monolítics i la implementació d'un algoritme de Retroprojecció i filtrat a posteriori. Pel que fa a l'adaptació de l'algoritme FBP3DRP, les resolucions espacials obtingudes varien en els intervals [2 mm, 3,4 mm], [2,3 mm, 3,3 mm] i [2,2 mm, 2,3 mm] per les direccions radial, tangencial i axial, respectivament, en el primer prototip de l'escàner MINDView dedicat a cervell. D'altra banda, en la implementació de l'algoritme de tipus BPF, es va realitzar una adquisició d'un maniquí de derenzo i es va comparar la resolució obtinguda amb l'algorisme de FBP3DRP i una implementació de l'algoritme de subconjunts ordenats en mode llista (LMOS - de l'anglès List Mode Ordered Subset). Mitjançant l'algoritme de tipus BPF es van obtenir valors pic-vall de 2.4 al llarg dels cilindres de l'maniquí de 1.6 mm de diàmetre, en contrast amb les mesures obtingudes de 1.34 i 1.44 per als algoritmes de FBP3DRP i LMOS, respectivament. L'anterior es tradueix en que, mitjançant l'algoritme de tipus BPF, s'aconsegueix millorar la resolució per obtenir-se un valor mitjà 1.6 mm. / [EN] Positron Emission Tomography (PET) is a medical imaging technique, in which an image is generated from the detection of gamma rays in coincidence. These rays are produced within a patient, who is injected with a positron emmiter radiotracer, from which positrons are annihilated with electrons in the media. The event acquisition process is focused on the scanner detector. The detector is in turn composed of a scintillation crystal, which transform the incident ray gamma into optical photons within the crystal. The purpose is then to determine the impact coordinates within the scintillation crystal with the greatest possible precision, so that, from these points, an image can be reconstructed.
Throughout history, detectors based on pixelated crystals have represented the quintessential choice for PET scanners manufacture. This thesis evaluates the impact on the spatial resolution of the MINDView PET scanner, developed in the seventh Framework program of the European Union No. 603002, which detectors are based on monolithic crystals. The use of monolithic crystals facilitates the determination of the depth of interaction (DOI - Depth Of Interaction) of the incident gamma rays, increases the precision in the determined impact coordinates, and reduces the parallax error induces in pixelated crystals, due to the difficulties in determining DOI.
In this thesis, we have achieved two main goals related to the measurement of the spatial resolution of the MINDView PET scanner: the adaptation of an STIR algorithm for Filtered BackProjection 3D Reproyected (FBP3DRP) to a scanner based on monolithic crystals, and the implementation of a BackProjection then Filtered algorithm (BPF). Regarding the FBP algorithm adaptation, we achieved resolutions ranging in the intervals [2 mm, 3.4 mm], [2.3 mm, 3.3 mm] and [2.2 mm, 2.3 mm] for the radial, tangential and axial directions, respectively. On the an acquisition of a derenzo phantom was performed to measure the spacial resolution, which was obtained using three reconstruction algorithms: the BPF-type algorithm, the FBP3DRP algorithm and an implementation of the list-mode ordered subsets algorithm (LMOS). Regarding the BPF-type algorithm, a peak-to-valley value of 2.4 were obtain along rod of 1.6 mm, in contrast to the measurements of 1.34 and 1.44 obtained for the FBP3DRP and LMOS algorithms, respectively. This means that, by means of the BPF-type algorithm, it is possible to improve the resolution to obtain an average value of 1.6 mm. / Sánchez Góez, S. (2020). Algoritmo de reconstrucción analítico para el escáner basado en cristales monolíticos MINDView [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159259
|
355 |
Development and Performance Evaluation of High Resolution TOF-PET Detectors Suitable for Novel PET ScannersLamprou, Efthymios 04 March 2021 (has links)
Tesis por compendio / [ES] La Tomografía por Emisión de Positrones (PET) es una de las técnicas más importantes en la medicina de diagnóstico actual y la más representativa en el campo de la Imagen Molecular. Esta modalidad de imagen es capaz de producir información funcional única, que permite la visualización en detalle, cuantificación y conocimiento de una variedad de enfermedades y patologías. Áreas como la oncología, neurología o la cardiología, entre otras, se han beneficiado en gran medida de esta técnica. A pesar de que un elevado número de avances han ocurrido durante el desarrollo del PET, existen otros que son de gran interés para futuras investigaciones. Uno de los principales pilares actualmente en PET, tanto en investigación como en desarrollo, es la obtención de la información del tiempo de vuelo (TOF) de los rayos gamma detectados. Cuando esto ocurre, aumenta la sensibilidad efectiva del PET, mejorando la calidad señal-ruido de las imágenes. Sin embargo, la obtención precisa de la marca temporal de los rayos gamma es un reto que requiere, además de técnicas y métodos específicos, compromisos entre coste y rendimiento. Una de las características que siempre se ve afectada es la resolución espacial. Como discutiremos, la resolución espacial está directamente relacionada con el tipo de centellador y, por lo tanto, con el coste del sistema y su complejidad.
En esta tesis, motivada por los conocidos beneficios en imagen clínica de una medida precisa del tiempo y de la posición de los rayos gamma, proponemos configuraciones de detectores TOF- PET novedosos capaces de proveer de ambas características. Sugerimos el uso de lo que se conoce como métodos de "light-sharing", tanto basado en cristales monolíticos como pixelados de tamaño diferente al del fotosensor. Estas propuestas hacen que la resolución espacial sea muy alta. Sin embargo, sus capacidades temporales han sido muy poco abordadas hasta ahora. En esta tesis, a través de varios artículos revisados, pretendemos mostrar los retos encontrados en esta dirección, proponer determinadas configuraciones y, además, indagar en los límites temporales de éstas.
Hemos puesto un gran énfasis en estudiar y analizar las distribuciones de la luz centellante, así como su impacto en la determinación temporal. Hasta nuestro conocimiento, este es el primer trabajo en el que se estudia la relación de la determinación temporal y la distribución de luz de centelleo, en particular usando SiPM analógicos y ASICs. Esperamos que esta tesis motive y permita otros muchos trabajos orientados en nuevos diseños, útiles para instrumentación PET, así como referencia para otros trabajos.
Esta tesis esta organizada como se describe a continuación. Hay una introducción compuesta por tres capítulos donde se resumen los conocimientos sobre imagen PET, y especialmente aquellos relacionados con la técnica TOF-PET. Algunos trabajos recientes, pero aún no publicados se muestran también, con el objetivo de corroborar ciertas ideas. En la segunda parte se incluyen las cuatro contribuciones que el candidato sugiere para el compendio de artículos. / [CA] La Tomografia per Emissió de Positrons (PET) és una de les tècniques més importants en la medicina de diagnòstic actual i la més representativa en el camp de la Imatge Molecular. Esta modalitat d'imatge és capaç de produir informació funcional única, que permet la visualització en detall, quantificació i coneixement d'una varietat de malalties i patologies. Àrees com l'oncologia, neurologia o la cardiologia, entre altres, s'han beneficiat en gran manera d'aquesta tècnica. Tot i que un elevat nombre d'avanços han ocorregut durant el desenvolupament del PET, hi ha altres que són de gran interés per a futures investigacions. Un dels principals pilars actuals en PET, tant en investigació com en desenvolupament, és l'obtenció de la informació del temps de vol (TOF en anglès) dels raigs gamma detectats. Quan açò ocorre, augmenta la sensibilitat efectiva del PET, millorant la qualitat senyal-soroll de les imatges. No obstant això, l'obtenció precisa de la marca temporal dels raigs gamma és un repte que requerix, a més de tècniques i mètodes específics, compromisos entre cost i rendiment. Una de les característiques que sempre es veu afectada és la resolució espacial. Com discutirem, la resolució espacial està directament relacionada amb el tipus de centellador, i per tant, amb el cost del sistema i la seua complexitat.
En aquesta tesi, motivada pels coneguts beneficis en imatge clínica d'una mesura precisa del temps i de la posició dels raigs gamma, proposem nouves configuracions de detectors TOF-PET capaços de proveir d'ambduess característiques. Suggerim l'ús del que es coneix com a mètodes de "light-sharing", tant basat en cristalls monolítics com pixelats de diferent tamany del fotosensor. Aquestes propostes fan que la resolució espacial siga molt alta. No obstant això, les seues capacitats temporals han sigut molt poc abordades fins ara. En aquesta tesi, a través de diversos articles revisats, pretenem mostrar els reptes trobats en aquesta direcció, proposar determinades configuracions i, a més, indagar en els límits temporals d'aquestes.
Hem posat un gran èmfasi a estudiar i analitzar les distribucions de la llum centellejant, així com el seu impacte en la determinació temporal. Fins al nostre coneixement, aquest és el primer treball en què s'estudia la relació de la determinació temporal i la distribució de llum de centelleig, en particular utilitzant SiPM analògics i ASICs. Esperem que aquesta tesi motive i permeta molts altres treballs orientats en nous dissenys, útils per a instrumentació PET, així com referència per a altres treballs.
Aquesta tesi esta organitzada com es descriu a continuació. Hi ha una introducció composta per tres capítols on es resumeixen els coneixements sobre imatge PET i, especialmente, aquells relacionats amb la tècnica TOF-PET. Alguns treballs recents, però encara no publicats es mostren també, amb l'objectiu de corroborar certes idees. La segona part de la tesi conté els quatre articles revisats que el candidat suggereix. / [EN] Positron Emission Tomography (PET) is one of the greatest tools of modern diagnostic medicine and the most representative in the field of molecular imaging. This imaging modality, is capable of providing a unique type of functional information which permits a deep visualization, quantification and understanding of a variety of diseases and pathologies. Areas like oncology, neurology, or cardiology, among others, have been well benefited by this technique. Although numerous important advances have already been achieved in PET, some other individual aspects still seem to have a great potential for further investigation. One of the main trends in modern PET research and development, is based in the extrapolation of the Time- Of-Flight (TOF) information from the gamma-ray detectors. In such case, an increase in the effective sensitivity of PET is accomplished, resulting in an improved image signal-to-noise ratio. However, the direction towards a precise decoding of the photons time arrival is a challenging task that requires, besides specific approaches and techniques, tradeoffs between cost and performance. A performance characteristic very habitually compromised in TOF-PET detector configurations is the spatial resolution. As it will be discussed, this feature is directly related to the scintillation materials and types, and consequently, with system cost and complexity.
In this thesis, motivated by the well-known benefits in clinical imaging of a precise time and spatial resolution, we propose novel TOF-PET detector configurations capable of inferring both characteristics. Our suggestions are based in light sharing approaches, either using monolithic detectors or crystal arrays with different pixel-to-photosensor sizes. These approaches, make it possible to reach a precise impact position determination. However, their TOF capabilities have not yet been explored in depth. In the present thesis, through a series of peer-reviewed publications we attempt to demonstrate the challenges encountered in these kinds of configurations, propose specific approaches improving their performance and eventually reveal their limits in terms of timing.
High emphasis is given in analyzing and studying the scintillation light distributions and their impact to the timing determination. To the best of our knowledge, this is one of the first works in which such detailed study of the relation between light distribution and timing capabilities is carried out, especially when using analog SiPMs and ASICs. Hopefully, this thesis will motivate and enable many other novel design concepts, useful in PET instrumentation as well as it will serve as a helpful reference for similar attempts.
The present PhD thesis is organized as follows. There is an introduction part composed by three detailed sections. We attempt to summarize here some of the knowledge related to PET imaging and especially with the technique of TOF-PET. Some very recent but still unpublished results are also presented and included in this part, aiming to support statements and theories. The second part of this thesis lists the four peer-reviewed papers that the candidate is including. / This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 695536). It has also been supported by the Spanish Ministerio de Economía, Industria y Competitividad under Grants No. FIS2014-62341-EXP and TEC2016-79884-C2-1-R. Efthymios Lamprou has also been supported by Generalitat Valenciana under grant agreement GRISOLIAP-2018-026. / Lamprou, E. (2021). Development and Performance Evaluation of High Resolution TOF-PET Detectors Suitable for Novel PET Scanners [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/162991 / Compendio
|
356 |
Characterization of Dedicated PET Equipment with Non-Conventional GeometryCañizares Ledo, Gabriel 28 July 2022 (has links)
[ES] Desde su creación en la década de 1950, las imágenes tomográficas han resultado muy valiosas en el ámbito médico ayudando tanto en el diagnóstico como en el tratamiento de múltiples enfermedades. Dentro de la imagen molecular, los escáneres PET (Tomografía por Emisión de Positrones) generan información detallada de la interacción de los radio-trazadores con el tejido de estudio, pudiendo combinar dicha información con imagen anatómica de escáneres TC (Tomografía Computarizada) o RM (Resonancia Magnética). Con el fin de aumentar las prestaciones de estos equipos, como la sensibilidad y la resolución espacial, los PET de cuerpo completo recientemente aumentan su cobertura axial. Sin embargo, el precio de estos dispositivos se multiplica, dificultando su compra en muchos hospitales y centros de investigación. Como alternativa, los escáneres PET específicos de órganos manejan un menor número de detectores haciéndolos más económicos. El objetivo de este tipo de escáneres es mejorar el rendimiento de los dispositivos acercando los detectores al paciente lo máximo posible, optimizando su diseño para un órgano en específico. Otra ventaja es la posible portabilidad de los aparatos. En esta tesis introducimos dos posibles diseños de PET específicos orientados a distintos órganos y con diferente tecnología y geometría y además un escáner preclínico con una geometría novedosa.
El primer escáner fue construido de un proyecto nacional llamado PROSPET, fue diseñado y optimizado para hacer imagen de la próstata, debido a la conocida elevada tasa de cáncer de próstata en hombres. El 17% de la población masculina sufrirá cáncer de próstata. El detector escogido para este diseño está compuesto por cristales centelladores monolíticos acoplados a una matriz de fotomultiplicadores de silicio. Inicialmente se pensó en crear un escáner compuesto por dos palas. Sin embargo, los resultados con pacientes no fueron satisfactorios debido a la falta de información angular y la ausencia de información temporal precisa en los detectores. Por tanto, se construyó una configuración de anillo con un diámetro reducido en comparación con escáneres de cuerpo completo. Se apreció un aumento en la sensibilidad y la resolución espacial, así como una buena calidad de imagen utilizando fantomas.
El segundo escáner, llamado proyecto CardioPET, está orientado a visualizar el corazón cuando el paciente está sometido a condiciones de estrés farmacológico. Para este dispositivo se utilizó el diseño de dos palas, pero usando cristales pixelados, mejorando la resolución temporal, permitiendo implantar algoritmos de tiempo de vuelo. Se han montado y testeado dos palas tanto con simulaciones como experimentalmente con buenas prestaciones. Además, se procedió a registrar el movimiento de las fuentes de radiación con el fin de aplicar correcciones de movimiento con la ayuda de una cámara externa y unos marcadores ARUCO. Los algoritmos de corrección de movimiento fueron testeados, demostrando un buen funcionamiento.
El último dispositivo fue diseñado para optimizar la configuración PET de anillo lo máximo posible. Para ello, se eliminaron los espaciados entre detectores en un escáner pequeño de animales, creando un único detector centellador de forma cilíndrica. Con esto se busca aumentar la sensibilidad, pues ya no se pierden interacciones en los huecos, y también la resolución espacial. Dos prototipos fueron testeados con simulaciones, y validados experimentalmente. El primero con caras de salida planas y el segundo totalmente cilíndrico. En ambos diseños se observaron efectos debidos a la curvatura del detector que necesariamente han de ser compensados con una calibración. / [CA] Des de la seua creació en la dècada de 1950, les imatges tomogràfiques hi han resultat molt valuoses en àmbit mèdic ajudant tant en el diagnòstic com en el tractament de moltes malalties. Dins de la imatge molecular, els escàners PET (Tomografia per Emissió de Positrons) generen informació detallada de la interacció dels traçadors amb el teixit del pacient, podent combinar aquesta informació amb imatge anatòmica d'escàners TC (Tomografia Axial Automatitzada) o RM (Ressonancia Magnètica). Amb el fi d'augmentar les prestacions d’aquests equips, els PET de cos complet augmenten la seua cobertura axial, multiplicant el preu dels dispositius i dificultant la seua compra en hospitals i centres d’investigació. Com a alternativa, els escàners PET específics d'òrgans utilitzen un menor nombre de detectors resultant així un preu més econòmic. Un altre avantatge és la possible portabilitat dels aparells. En aquesta tesi abordem tres possibles dissenys de PET específics orientats a diferents òrgans i amb diferent tecnologia i geometria. El primer de tots, un projecte nacional denominat PROSPET, ha sigut dissenyat i optimitzat per a fer imatge de la pròstata, ja que és molt coneguda l'elevada taxa de càncer de pròstata en homes. El 17% de población masculina patirà càncer de pròstata. El detector escollit per a aquest disseny està format per cristals centellejadors monolítics acoblats a una matriu de fotomultiplicadors de silici. De primeres es va pensar a crear un escàner compost per dues pales, ja que permetria disposar els detectors molt a prop del pacient. El resultat no va ser molt satisfactori a causa de la falta d'informació angular i l'absència d'informació temporal precisa. Per tant, l'última iteració va consistir en una configuració d'anell amb un diàmetre reduït en comparació amb els escàners de cos complet. Es va observar una millora en la sensibilitat i la resolució espacial, així com una qualitat d'imatge acceptable. El segon dispositiu va ser dissenyat per a optimitzar la configuració d'anell el màxim possible. Per això es van llevar els espaiats entre detectors, creant un únic detector de forma cilíndrica. Amb aquest disseny es busca augmentar la sensibilitat, ja que no es perden interaccions en els espaiats, i també la resolució espacial. Dos prototips van ser testejats amb simulacions i validats experimentalment. El primer amb cares d'eixida planars i el segon totalment cilíndric. En els dos dissenys es va observar efectes deguts a la curvatura del detector que necessàriament ha de ser compensat amb una calibració. L’últim escàner, denominat projecte CardioPET, està orientat a visualitzar el cor durant el pacient quan és sotmés a condicions d'estrés farmacologic. escàner, denominat projecte CardioPET, està orientat a visualitzar el cor durant el pacient quan és sotmés a condicions d'estrés. Es va recuperar el disseny de les pales per aquest dispositiu, però utilitzant cristals pixelats, millorant la resolució temporal. Dues pales van ser muntades i testejades tant amb simulacions com experimentalment amb bones prestacions. A més, es va registrar el moviment de les fonts de radiació amb la fi d'aplicar correcció de moviment amb l'ajuda d'una càmera externa i uns marcadors ARUCO. Els algoritmes de correcció de moviment també van ser testejats, demostrant un bon funcionament. L'últim dispositiu va ser dissenyat per a optimitzar la configuració d'anell el màxim possible. Per això es van llevar els espaiats entre detectors, creant un únic detector de forma cilíndrica. Amb aquest disseny es busca augmentar la sensibilitat, ja que no es perden interaccions en els espaiats, i també la resolució espacial. Dos prototips van ser testejats amb simulacions i validats experimentalment. El primer amb cares d'eixida planars i el segon totalment cilíndric. En els dos dissenys es va observar efectes deguts a la curvatura del detector que necessàriament ha de ser compensat amb una calibració. / [EN] Since their introduction in the 1950-decade, tomographic images have become very valuable in the medical field helping both in diagnostics and in a variety of illnesses treatment. In the molecular imaging field, Positron Emission Tomography (PET) provides accurate information of the radio-tracers interactions with the patient tissue. Moreover, it is possible to combine this information with anatomical images provided by CT (Computed Tomography) or MR (Magnetic Resonance) scanners. With the aim to improve PET systems performance, such as the spatial resolution and the sensitivity, whole body (WB) PET scanners with large axial coverage are recently proposed. However, the system cost increases and, thus, makes difficult their installation in many hospitals or research centers. Organ-dedicated PET scanners, as an alternative to such large systems, use a lower number of detectors, so their price is considerably more economical. The goal of this kind of systems is to boost PET performance by placing the detectors as close as possible to the patient, optimizing the design for a specific organ instead of a large volume. Other advantage of these scanners is their portability. In this thesis we have worked in the design and validation of two organ-dedicated PET scanners with different geometries and technologies, as well as in a novel pre-clinical PET.
The first scanner was the result from a national project called PROSPET. A PET system was designed and optimized to image the prostate area. Notice there is a high incidence rate of prostate cancer in the male population. 17% of male population will suffer prostate cancer. For this scanner, the detector modules were composed by a monolithic LYSO scintillation block coupled to a photosensor array based on silicon photomultipliers (SiPM). The first design configuration was made by two panels. However, patient results were not satisfactory due to the lack of angular information and the poor detector time resolution. Therefore, it was rebuilt in a ring configuration with a reduced diameter in comparison with WB-PET scanners. A high sensitivity and spatial resolution were found, as well as a good image quality using phantoms.
The second PET scanner, called CardioPET, also arose from a national grant, and it was implemented to visualize the heart area when the patient is under stress condition. The two panels geometry was also implemented for this system, but using pixelated crystals, therefore improving the detector time resolution and allowing to use time of flight (TOF) reconstruction algorithms. Two panels were mounted and tested with both simulation and experimental data with good results. Furthermore, the patient motion was registered applying movement correction techniques with the help of an external optical camera device and ARUCO markers. These algorithms were tested showing a good performance.
The last device that we worked within this PhD thesis was designed to optimize the classical ring PET configuration as much as possible. To do so, the gaps between the detector modules in a small animal PET were eliminated by building a single detector with a cylindrical scintillator shape. The goal is to improve the sensitivity, given that there are no event losses in the gaps and to also boost the spatial resolution since there are not edges. Two prototypes were tested with simulations, and experimentally validated as well. The first of them was built with planar outer faces whereas the second was fully cylindrical. In both designs some effects originated from the detector curvature were observed and successfully corrected during the calibration. / This thesis was supported by a FPI grant under 2017-08582 reference in the PhD program:
“Programa de Doctorado en Tecnologías para la Salud y el Bienestar” belonging to the
Polytechnic University of Valencia. The grant was supported by the “Consejo Superior de
Investigaciones Científicas” together with the “Agencia Estatal de Investigación” and the “Fondo
Social Europeo”. / Cañizares Ledo, G. (2022). Characterization of Dedicated PET Equipment with Non-Conventional Geometry [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/184977
|
357 |
Implementation of New Algorithms for an Accurate Gamma-Ray Impact Determination in Scintillation Monolithic Blocks for PET ApplicationsFreire López-Fando, Marta 07 September 2023 (has links)
Tesis por compendio / [ES] La Tomografía por Emisión de Positrones (PET) es una potente técnica de imagen que proporciona mediante el uso de radiofármacos específicos medidas cuantitativas de los procesos biológicos y fisiológicos que tienen lugar en el organismo a nivel molecular. Las imágenes PET proporcionan información funcional que permite el diagnóstico precoz y el seguimiento personalizado del tratamiento terapéutico. La PET tiene aplicaciones en diversas áreas clínicas y de investigación, como la oncología, la neurología o la cardiología, entre otras. Los esfuerzos por mejorar las prestaciones de los sistemas PET se centran en aumentar su sensibilidad y calidad de imagen, lo que permite una evaluación clínica más precisa.
En las imágenes PET, se inyecta al paciente un radiotrazador marcado con un radionúclido emisor de positrones que se distribuye por todo el cuerpo. Durante la desintegración radiactiva del trazador, el isótopo emite un positrón que se aniquila con un electrón del tejido circundante, generando dos rayos gamma de 511 keV emitidos a aproximadamente 180º. La técnica PET se basa por tanto en la detección simultánea de estos dos rayos gamma, denominados fotones de aniquilación, empleando habitualmente un anillo de detectores alrededor del paciente. Mejorando el diseño y el rendimiento de estos detectores, se mejoran las capacidades diagnósticas que ofrece la imagen PET.
Para aumentar el rendimiento, se ha sugerido utilizar detectores basados en diseños de cristales monolíticos, debido a sus ventajas en comparación con los detectores pixelados. Sin embargo, su implementación en escáneres comerciales requiere superar algunos retos relacionados principalmente con los métodos de posicionamiento y los procedimientos de calibración necesarios para proporcionar las coordenadas de impacto del fotón de aniquilación y el tiempo de llegada de los fotones. Esta tesis doctoral se centra en el desarrollo y validación experimental de metodologías para la determinación precisa de esta información en detectores monolíticos, haciendo hincapié en su aplicación práctica también a sistemas PET completos.
Durante esta tesis se han estudiado los principios fundamentales de los detectores PET monolíticos para comprender su comportamiento y limitaciones. En primer lugar, se han considerado las configuraciones típicas de detectores monolíticos basadas en bloques de centelleo continuo acoplados a matrices de SiPMs planas; además, también se han evaluado y validado otros enfoques novedosos. Se han desarrollado dos metodologías principales, una basada en técnicas analíticas y otra en algoritmos de Aprendizaje Profundo, para el posicionamiento 3D de la interacción del fotón con el fin de aumentar el rendimiento global del detector. Finalmente, los métodos propuestos han sido validados a nivel de detector, pero también en diferentes escáneres PET desarrollados en i3M.
La presente tesis se basa en un compendio de los artículos más relevantes publicados en revistas revisadas por pares por el doctorando y está organizada de la siguiente manera. El Capítulo I presenta una introducción al trabajo de la tesis, compuesto por tres secciones: Imagen Médica, principios de la Tomografía por Emisión de Positrones y, Estimación de posición y calibración en detectores monolíticos. El Capítulo II contiene los objetivos específicos de esta tesis y las principales contribuciones del candidato a este campo. Este capítulo también incluye algunas metodologías y resultados recientes que aún no han sido publicados. El Capítulo III colecciona una copia de los cuatro artículos publicados seleccionados para el compendio, en los que el candidato es el primer autor [1]-[4]. En el Capítulo IV se discuten los principales resultados y conclusiones alcanzados durante la tesis. Por último, el Capítulo V presenta la discusión de esta tesis, resumiendo las principales contribuciones y destacando los logros científicos. / [CAT] La Tomografia per Emissió de Positrons (PET) és una potent tècnica d'imatge que proporciona mitjançant l'ús de radiofàrmacs específics mesures quantitatives dels processos biològics i fisiològics que tenen lloc en l'organisme a nivell molecular. Les imatges PET proporcionen informació funcional que permet el diagnòstic precoç i el seguiment personalitzat del tractament terapèutic. La PET té aplicacions en diverses àrees cliniques y d¿investigació, com l'oncologia, la neurologia o la cardiologia, entre altres. Els esforços per millorar les prestacions dels sistemes PET se centren en millorar la seua sensibilitat i qualitat d'imatge, la qual cosa permet una avaluació clínica més precisa més precís.
En les imatges PET, s'injecta al pacient un radiotraçador marcat amb un radionúclid emissor de positrons que es distribueix per tot el cos. Durant la desintegració radioactiva del traçador, l'isòtop emet un positró que s'aniquila amb un electró del teixit circumdant, generant dos raigs gamma de 511 keV emesos a aproximadament 180º. La tècnica PET es basa per tant en la detecció simultània d'aquests dos raigs gamma, denominats fotons d'anihilació, emprant habitualment un anell de detectors al voltant del pacient. Millorant el disseny i el rendiment d'aquests detectors, es millora les capacitats diagnòstiques que ofereix la imatge PET.
Per a augmentar el rendiment, s'ha suggerit utilitzar detectors basats en dissenys de cristalls monolítics, a causa dels seus avantatges en comparació amb els detectors pixelats. No obstant això, la seua implementació en escàners comercials requereix superar alguns reptes relacionats principalment amb els mètodes de posicionament i els procediments de calibració necessaris per a proporcionar les coordenades d'impacte del fotó d'anihilació i el temps d'arribada dels fotons. Aquesta tesi doctoral se centra en el desenvolupament i validació experimental de metodologies per a la determinació precisa d'aquesta informació en detectors monolítics, posant l'accent en la seua aplicació pràctica també a sistemes PET complets.
Durant aquesta tesi s'han estudiat els principis fonamentals dels detectors PET monolítics per a comprendre el seu comportament i limitacions. En primer lloc, s'han considerat les configuracions típiques de detectors monolítics basats en blocs de centellege continu acoblats a matrius SiPM planes; a més, també s'han evaluat i validat altres enfocaments nous. S'han desenvolupat dues metodologies principals, una basada en tècniques analítiques i una altra en algoritmes d'Aprenentatge Profund, pel posicionament 3D de la interacció del fotó amb la finalitat d'augmentar el rendiment global del detector. Finalment, els mètodes proposats han sigut validats a nivell de detector però també en diferents escàners PET desenvolupats en i3M.
La present tesi es basa en un compendi dels articles més rellevants publicats en revistes revisades per parells pel doctorand i està organitzada de la següent manera. El Capítol I presenta una introducció al treball de tesi, compost per tres seccions: Imatge Mèdica, principis de la Tomografia per Emissió de Positrons i, Estimació de posició i calibració en detectors monolítics. El Capítol II conté els objectius específics d'aquesta tesi i les principals contribucions del candidat a aquest camp. Aquest capítol també inclou algunes metodologies i resultats recents que encara no han sigut publicats. El Capítol III col·lecciona una còpia dels quatre articles publicats seleccionats pel compendi, en els quals el candidat és el primer autor [1]-[4]. En el Capítol IV es discuteixen els principals resultats i conclusions aconseguits durant la tesi. Finalment, el Capítol V presenta la discussió d'aquesta tesi, resumint les principals contribucions i destacant els assoliments científics. / [EN] Positron Emission Tomography (PET) is a powerful imaging technique that provides quantitative measurements of biological and physiological processes occurring within the body at the molecular level by using specific radiopharmaceuticals. PET imaging returns functional information that allows for early diagnosis and personalized therapy treatment follow up. It has applications in several research and clinical areas, such as oncology, neurology or cardiology, among others. Efforts to improve PET systems performance are focused on increasing their sensitivity and image quality, allowing for more accurate clinical assessments.
In PET imaging, a radiotracer labeled with a positron-emitting radionuclide is injected to the patient and consequently, distributed throughout the body. During the radiotracer decay, the isotope emits a positron that annihilates with an electron of the surrounding tissues, generating two 511 keV gamma-rays emitted at approximately 180º. The PET technique is based therefore on the simultaneous detection of these two gamma-rays, called annihilation photons, by usually employing a ring of detectors around the patient. Improving the design and performance of these detectors, increases the diagnostic capabilities of PET imaging.
To boost PET performance, it has been suggested to use detectors based on monolithic crystals designs, due to their advantages compared to pixelated detectors. However, their implementation in commercial scanners requires overcoming some challenges mostly related to photon impact positioning methods and calibration procedures to provide the impact coordinates and time of arrival of the annihilation photons. This PhD thesis focuses on the development and experimental validation of methodologies for an accurate determination of this information in monolithic detectors, emphasizing in their practical application to full PET systems.
During this thesis, the main principles of monolithic-based PET detectors have been studied to understand their behavior and limitations. Typical monolithic detector configurations based on continuous scintillation blocks coupled to flat SiPM arrays have been first considered; additionally, other novel approaches have been also validated. Two main methodologies for 3D photon interaction positioning, one based on analytical methods and another based on Deep Learning algorithms, have been developed to increase the overall detector performance. The proposed methods have been validated at the detector level but also in different PET scanners developed by our group.
The present thesis is based on a compendium of the most relevant papers published in peer-reviewed journals by the PhD candidate and is organized as follows. Chapter I presents an introduction to the thesis work, composed by three sections: Medical Imaging, principles of Positron Emission Tomography and, Position estimation and calibration in monolithic-based detectors. Chapter II contains the specific objectives of this thesis and the main contributions of the candidate to the field. This chapter also includes some recent methodologies and results that have not yet been published. Chapter III collects an author copy of the four published articles selected for the compendium, in which the candidate is the first author [1]-[4]. In Chapter IV the main results and conclusion achieved during the thesis are discussed. Finally, Chapter V presents the discussion of this thesis, summarizing the main contributions and highlighting the scientific achievements. / Freire López-Fando, M. (2023). Implementation of New Algorithms for an Accurate Gamma-Ray Impact Determination in Scintillation Monolithic Blocks for PET Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196084 / Compendio
|
358 |
Les algorithmes de haute résolution en tomographie d'émission par positrons : développement et accélération sur les cartes graphiquesNassiri, Moulay Ali 05 1900 (has links)
La tomographie d’émission par positrons (TEP) est une modalité d’imagerie moléculaire utilisant des radiotraceurs marqués par des isotopes émetteurs de positrons permettant de quantifier et de sonder des processus biologiques et physiologiques. Cette modalité est surtout utilisée actuellement en oncologie, mais elle est aussi utilisée de plus en plus en cardiologie, en neurologie et en pharmacologie. En fait, c’est une modalité qui est intrinsèquement capable d’offrir avec une meilleure sensibilité des informations fonctionnelles sur le métabolisme cellulaire. Les limites de cette modalité sont surtout la faible résolution spatiale et le manque d’exactitude de la quantification. Par ailleurs, afin de dépasser ces limites qui constituent un obstacle pour élargir le champ des applications cliniques de la TEP, les nouveaux systèmes d’acquisition sont équipés d’un grand nombre de petits détecteurs ayant des meilleures performances de détection. La reconstruction de l’image se fait en utilisant les algorithmes stochastiques itératifs mieux adaptés aux acquisitions à faibles statistiques. De ce fait, le temps de reconstruction est devenu trop long pour une utilisation en milieu clinique. Ainsi, pour réduire ce temps, on les données d’acquisition sont compressées et des versions accélérées d’algorithmes stochastiques itératifs qui sont généralement moins exactes sont utilisées. Les performances améliorées par l’augmentation de nombre des détecteurs sont donc limitées par les contraintes de temps de calcul.
Afin de sortir de cette boucle et permettre l’utilisation des algorithmes de reconstruction robustes, de nombreux travaux ont été effectués pour accélérer ces algorithmes sur les dispositifs GPU (Graphics Processing Units) de calcul haute performance. Dans ce travail, nous avons rejoint cet effort de la communauté scientifique pour développer et introduire en clinique l’utilisation des algorithmes de reconstruction puissants qui améliorent la résolution spatiale et l’exactitude de la quantification en TEP.
Nous avons d’abord travaillé sur le développement des stratégies pour accélérer sur les dispositifs GPU la reconstruction des images TEP à partir des données d’acquisition en mode liste. En fait, le mode liste offre de nombreux avantages par rapport à la reconstruction à partir des sinogrammes, entre autres : il permet d’implanter facilement et avec précision la correction du mouvement et le temps de vol (TOF : Time-Of Flight) pour améliorer l’exactitude de la quantification. Il permet aussi d’utiliser les fonctions de bases spatio-temporelles pour effectuer la reconstruction 4D afin d’estimer les paramètres cinétiques des métabolismes avec exactitude. Cependant, d’une part, l’utilisation de ce mode est très limitée en clinique, et d’autre part, il est surtout utilisé pour estimer la valeur normalisée de captation SUV qui est une grandeur semi-quantitative limitant le caractère fonctionnel de la TEP. Nos contributions sont les suivantes :
- Le développement d’une nouvelle stratégie visant à accélérer sur les dispositifs GPU l’algorithme 3D LM-OSEM (List Mode Ordered-Subset Expectation-Maximization), y compris le calcul de la matrice de sensibilité intégrant les facteurs d’atténuation du patient et les coefficients de normalisation des détecteurs. Le temps de calcul obtenu est non seulement compatible avec une utilisation clinique des algorithmes 3D LM-OSEM, mais il permet également d’envisager des reconstructions rapides pour les applications TEP avancées telles que les études dynamiques en temps réel et des reconstructions d’images paramétriques à partir des données d’acquisitions directement.
- Le développement et l’implantation sur GPU de l’approche Multigrilles/Multitrames pour accélérer l’algorithme LMEM (List-Mode Expectation-Maximization). L’objectif est de développer une nouvelle stratégie pour accélérer l’algorithme de référence LMEM qui est un algorithme convergent et puissant, mais qui a l’inconvénient de converger très lentement. Les résultats obtenus permettent d’entrevoir des reconstructions en temps quasi-réel que ce soit pour les examens utilisant un grand nombre de données d’acquisition aussi bien que pour les acquisitions dynamiques synchronisées.
Par ailleurs, en clinique, la quantification est souvent faite à partir de données d’acquisition en sinogrammes généralement compressés. Mais des travaux antérieurs ont montré que cette approche pour accélérer la reconstruction diminue l’exactitude de la quantification et dégrade la résolution spatiale. Pour cette raison, nous avons parallélisé et implémenté sur GPU l’algorithme AW-LOR-OSEM (Attenuation-Weighted Line-of-Response-OSEM) ; une version de l’algorithme 3D OSEM qui effectue la reconstruction à partir de sinogrammes sans compression de données en intégrant les corrections de l’atténuation et de la normalisation dans les matrices de sensibilité. Nous avons comparé deux approches d’implantation : dans la première, la matrice système (MS) est calculée en temps réel au cours de la reconstruction, tandis que la seconde implantation utilise une MS pré- calculée avec une meilleure exactitude. Les résultats montrent que la première implantation offre une efficacité de calcul environ deux fois meilleure que celle obtenue dans la deuxième implantation. Les temps de reconstruction rapportés sont compatibles avec une utilisation clinique de ces deux stratégies. / Positron emission tomography (PET) is a molecular imaging modality that uses radiotracers labeled with positron emitting isotopes in order to quantify many biological processes. The clinical applications of this modality are largely in oncology, but it has a potential to be a reference exam for many diseases in cardiology, neurology and pharmacology. In fact, it is intrinsically able to offer the functional information of cellular metabolism with a good sensitivity. The principal limitations of this modality are the limited spatial resolution and the limited accuracy of the quantification. To overcome these limits, the recent PET systems use a huge number of small detectors with better performances. The image reconstruction is also done using accurate algorithms such as the iterative stochastic algorithms. But as a consequence, the time of reconstruction becomes too long for a clinical use. So the acquired data are compressed and the accelerated versions of iterative stochastic algorithms which generally are non convergent are used to perform the reconstruction. Consequently, the obtained performance is compromised.
In order to be able to use the complex reconstruction algorithms in clinical applications for the new PET systems, many previous studies were aiming to accelerate these algorithms on GPU devices. Therefore, in this thesis, we joined the effort of researchers for developing and introducing for routine clinical use the accurate reconstruction algorithms that improve the spatial resolution and the accuracy of quantification for PET.
Therefore, we first worked to develop the new strategies for accelerating on GPU devices the reconstruction from list mode acquisition. In fact, this mode offers many advantages over the histogram-mode, such as motion correction, the possibility of using time-of-flight (TOF) information to improve the quantification accuracy, the possibility of using temporal basis functions to perform 4D reconstruction and extract kinetic parameters with better accuracy directly from the acquired data. But, one of the main obstacles that limits the use of list-mode reconstruction approach for routine clinical use is the relatively long reconstruction time. To overcome this obstacle we :
developed a new strategy to accelerate on GPU devices fully 3D list mode ordered-subset expectation-maximization (LM-OSEM) algorithm, including the calculation of the sensitivity matrix that accounts for the patient-specific attenuation and normalisation corrections. The reported reconstruction are not only compatible with a clinical use of 3D LM-OSEM algorithms, but also lets us envision fast reconstructions for advanced PET applications such as real time dynamic studies and parametric image reconstructions.
developed and implemented on GPU a multigrid/multiframe approach of an expectation-maximization algorithm for list-mode acquisitions (MGMF-LMEM). The objective is to develop new strategies to accelerate the reconstruction of gold standard LMEM (list-mode expectation-maximization) algorithm which converges slowly. The GPU-based MGMF-LMEM algorithm processed data at a rate close to one million of events per second per iteration, and permits to perform near real-time reconstructions for large acquisitions or low-count acquisitions such as gated studies.
Moreover, for clinical use, the quantification is often done from acquired data organized in sinograms. This data is generally compressed in order to accelerate reconstruction. But previous works have shown that this approach to accelerate the reconstruction decreases the accuracy of quantification and the spatial resolution. The ordered-subset expectation-maximization (OSEM) is the most used reconstruction algorithm from sinograms in clinic. Thus, we parallelized and implemented the attenuation-weighted line-of-response OSEM (AW-LOR-OSEM) algorithm which allows a PET image reconstruction from sinograms without any data compression and incorporates the attenuation and normalization corrections in the sensitivity matrices as weight factors. We compared two strategies of implementation: in the first, the system matrix (SM) is calculated on the fly during the reconstruction, while the second implementation uses a precalculated SM more accurately. The results show that the computational efficiency is about twice better for the implementation using calculated SM on-the-fly than the implementation using pre-calculated SM, but the reported reconstruction times are compatible with a clinical use for both strategies.
|
359 |
Reconstruction 4D intégrant la modélisation pharmacocinétique du radiotraceur en imagerie fonctionnelle combinée TEP/TDM / 4D reconstruction including radiopharmaceutical modeling in PET/CT imagingMerlin, Thibaut 11 December 2013 (has links)
L'imagerie TEP permet de mesurer et visualiser les changements de la distribution biologique des radiopharmaceutiques au sein des organes d'intérêt au court du temps. Ce suivi temporel offre des informations très utiles concernant les processus métaboliques et physiologiques sous-jacents, qui peuvent être extraites grâce à différentes techniques de modélisation cinétique. De plus, un autre avantage de la prise en compte de l'information temporelle dans les acquisitions TEP pour les examens en oncologie thoracique concerne le suivi des mouvements respiratoires. Ces acquisitions permettent de mettre en place des protocoles et des méthodologies visant à corriger leurs effets néfastes à la quantification, et les artefacts associés. L'objectif de ce projet est de développer une méthode de reconstruction permettant de combiner et mettre en oeuvre d'une part les corrections nécessaires à la quantification des données en TEP, et d'autre part la modélisation de la biodistribution du radiotraceur au cours du temps permettant d'obtenir des images paramétriques pour l'oncologie thoracique. Dans un premier temps, une méthodologie de correction des effets de volume partiel intégrant, dans le processus de reconstruction, une déconvolution de Lucy-Richardson associée à un débruitage dans le domaine des ondelettes, a été proposée. Une seconde étude a été consacrée au développement d'une méthodologie combinant une régularisation temporelle des données par l'intermédiaire d'un ensemble de fonctions de base temporelles, avec une méthode de correction des mouvements respiratoires basée sur un modèle élastique. Enfin, dans une troisième étape, le modèle cinétique de Patlak a été intégré dans un algorithme de reconstruction dynamique, et associé à la correction de mouvement afin de permettre la reconstruction directe d'images paramétriques de données thoraciques soumises au mouvement respiratoire. Les paramètres de transformation élastique pour la correction de mouvement ont été calculés à partir des images TEP d'intervalles synchronisés par rapport à l'amplitude de la respiration du patient. Des simulations Monte-Carlo d'un fantôme 4D géométrique avec plusieurs niveaux de statistiques, et du fantôme anthropomorphique NCAT intégrant des courbes d'activités temporelles réalistes pour les différents tissus, ont été réalisées afin de comparer les performances de la méthode de reconstruction paramétrique développée dans ce travail avec une approche 3D standard d'analyse cinétique. L'algorithme proposé a ensuite été testé sur des données cliniques de patients présentant un cancer bronchique non à petites cellules. Enfin, après la validation indépendante de l'algorithme de correction des effets de volume partiel d'une part, et de la reconstruction 4D incorporant la régularisation temporelle d'autre part, sur données simulées et cliniques, ces deux méthodologies ont été associées afin d'optimiser l'estimation de la fonction d'entrée à partir d'une région sanguine des images reconstruites. Les résultats de ce travail démontrent que l'approche de reconstruction paramétrique proposée permet de conserver un niveau de bruit stable dans les régions tumorales lorsque la statistique d'acquisition diminue, contrairement à l'approche d'estimation 3D pour laquelle le niveau de bruit constaté augmente. Ce résultat est intéressant dans l'optique d'une réduction de la durée des intervalles de la reconstruction 4D, permettant ainsi de réduire la durée totale de l'acquisition 4D. De plus, l'utilisation des fonctions d'entrée estimées avec les méthodes de régularisation temporelle proposées ont conduit à améliorer l'estimation des paramètres de Patlak. Enfin, la correction élastique du mouvement amène à une diminution du biais d'estimation des deux paramètres de Patlak, en particulier sur les tumeurs de petites dimensions situées dans des régions sensibles au mouvement respiratoire. / Positron emission tomography (PET) is now considered as the gold standard and the main tool for the diagnosis and therapeutic monitoring of oncology patients, especially due to its quantitative aspects. With the advent of multimodal imaging in combined PET and X-ray CT systems, many methodological developments have been proposed in both pre-processing and data acquisition, image reconstruction, as well as post-processing in order to improve the quantification in PET imaging. Another important aspect of PET imaging is its high temporal resolution and ability to perform dynamic acquisitions, benefiting from the high sensitivity achieved with current systems. PET imaging allows measuring and visualizing changes in the biological distribution of radiopharmaceuticals within the organ of interest over time. This time tracking provides valuable information to physicians on underlying metabolic and physiological processes, which can be extracted using pharmacokinetic modeling. The objective of this project is, by taking advantage of dynamic data in PET/CT imaging, to develop a reconstruction method combining in a single process all the correction methodology required to accurately quantify PET data and, at the same time, include a pharmacokinetic model within the reconstruction in order to create parametric images for applications in oncology. In a first step, a partial volume effect correction methodology integrating, within the reconstruction process, the Lucy-Richardson deconvolution algorithm associated with a wavelet-based denoising method has been introduced. A second study focused on the development of a 4D reconstruction methodology performing temporal regularization of the dataset through a set of temporal basis functions, associated with a respiratory motion correction method based on an elastic deformation model. Finally, in a third step, the Patlak kinetic model has been integrated in a dynamic image reconstruction algorithm and associated with the respiratory motion correction methodology in order to allow the direct reconstruction of parametric images from dynamic thoracic datasets affected by the respiratory motion. The elastic transformation parameters derived for the motion correction have been estimated from respiratory-gated PET images according to the amplitude of the patient respiratory cycle. Monte-carlo simulations of two phantoms, a 4D geometrical phantom, and the anthropomorphic NCAT phantom integrating realistic time activity curves for the different tissues, have been performed in order to compare the performances of the proposed 4D parametric reconstruction algorithm with a standard 3D kinetic analysis approach. The proposed algorithm has then been assessed on clinical datasets of several patients with non small cell lung carcinoma. Finally, following the prior validation of the partial volume effect correction algorithm on one hand, and the 4D reconstruction incorporating the temporal regularization on the other hand, on simulated and clinical datasets, these two methodologies have been associated within the 4D reconstruction algorithm in order to optimize the estimation of image derived input functions. The results of this work show that the proposed direct parametric approach allows to maintain a similar noise level in the tumor regions when the statistic decreases, contrary to the 3D estimation approach for which the observed noise level increases. This result suggests interesting perspectives for the reduction of frame duration reduction of 4D reconstruction, allowing a reduction of the total 4D acquisition duration. In addition, the use of input function estimated with the developed temporal regularization methods led to the improvement of the Patlak parameters estimation. Finally, the elastic respiratory motion correction led to a diminution of the estimation bias of both Patlak parameters, in particular for small lesions located in regions affected by the respiratory motion.
|
360 |
Performance diagnóstica do PET-CT com rubídio-82 na avaliação da perfusão e da função ventricular esquerda em pacientes submetidos à cinecoronarioangiografia e SPECT com 99mTc-SESTAMIBI / Diagnostic performance of rubidium-82 PET-CT in evaluation of perfusion and left ventricular function in patients submitted to coronary angiography and 99mTc-SESTAMIBI SPECTPadilha, Bruno Gomes 20 May 2019 (has links)
Introdução: A avaliação e detecção precoce dos defeitos de perfusão miocárdica permite estratificar o risco cardiovascular e auxiliar a tomada de decisão terapêutica nos pacientes com DAC estabelecida ou suspeita. O PET/CT com Rb-82 na avaliação da perfusão e função miocárdica não invasiva é uma ferramenta de elevada acurácia diagnóstica. O presente trabalho procura estabelecer uma avaliação de performance de diagnóstica, entre dois métodos na medicina nuclear - SPECT com 99mTc-Sestamibi e PET/CT com Rb-82. Métodos: Avaliação da perfusão e da função do ventrículo esquerdo em 42 pacientes submetidos ao PET-CT com Rb-82 e SPECT com MIBI com mesmo estresse farmacológico (Dipiridamol), utilizando-se das variáveis de perfusão (SSS, SDS, SRS, fluxo sanguíneo e reserva coronariana) e de função (FEVE, DeltaFEVE, VDF, VSF - no repouso e no estresse), considerando o CATE como o método de referência. Resultados: No escore SDS, o Rb-82 apresentou valores médios próximos ao dobro do MIBI no grupo dos alterados (7,6 vs 3,9). Obteve-se um valor de sensibilidade do Rb-82 de 90,9%, com VPP de 88,2% (p=0,012) para o SSS e de 87,8%, com VPP de 87,8% (p= 0,012) para o SDS. As áreas sobre curva demonstraram superioridade do Rb-82 com maior exatidão e acurácia do método em relação ao MIBI na amostra avaliada. No escore de reversibilidade (SDS), houve maior sensibilidade em cut-off de menor valor e maior especificidade em cut-off de maior valor. FEVE em repouso e estresse, assim como, VDF e VSF em repouso e estresse apresentaram valores de concordância altos. Os valores de SSS, SRS e SDS apresentaram concordâncias moderadas. Houve aparente queda do DeltaFEVE no Rb-82, contudo similar tendência não foi observada no MIBI, considerando que as diferenças não foram significativas com relação ao número de vasos com estenose em ambos os radioisótopos (p > 0,05). Em outra análise, entre uma variável de função ventricular e a CFR global foi evidenciada diferença significativa (p=0,024) entre os grupos normal e alterado. No grupo alterado com CFR global < 2,0 houve redução do DeltaFEVE em 2,7%.Conclusão: O PET-CT com 82Rb apresenta maior exatidão e acurácia diagnóstica na avaliação perfusional miocárdica em relação ao SPECT com MIBI, inclusive com reclassificação dos grupos avaliados que passaram de defeito perfusional de pequena para moderada extensão. A FEVE estresse na população geral sugere valor mais alto no 82Rb (aquisição do exame no pico do estresse).Haveria uma sugestão de que no grupo com CATE alterado, a CFR global seria reduzida; que em maiores graus de estenose coronariana ao CATE, a CFR global decresceria; que existiria queda da DeltaFEVE no 82Rb quanto maior fosse o número de vasos obstruídos ao CATE. A relação entre a FEVE reserva e a CFR global no 82Rb foi significativa com queda da DeltaFEVE no grupo com CFR global alterada / Background: The evaluation and early detection of myocardial perfusion defects allows to stratify cardiovascular risk and it helps therapeutic decision-making in patients with established or suspected CAD. Rb-82 PET/CT in perfusion evaluation and noninvasive myocardial function is a tool of high diagnostic accuracy. The present study seeks to establish a diagnostic performance evaluation between two methods in nuclear medicine - 99mTc-Sestamibi SPECT and Rb-82 PET/CT. Methods: Evaluation of perfusion and left ventricular function in 42 patients submitted to Rb-82 PET-CT and MIBI SPECT with the same pharmacological stress (Dipyridamole), using perfusion variables (SSS, SDS, SRS, blood flow and coronary reserve) and function (LVEF, DeltaLVEF, EDV, ESV - in rest and stress), considering CAG as the reference method. Results: In the SDS score, Rb-82 presented mean values close to double the MIBI in the altered group (7.6 vs 3.9). A Rb-82 sensitivity of 90.9% was obtained, with PPV of 88.2% (p = 0.012) for SSS and 87.8% for PPV of 87.8% (p = 0.012) for or SDS. The areas on the curve indicated superiority of Rb-82 with greater accuracy and accuracy of the method in relation to the MIBI in the sample evaluated. In the reversibility score (SDS), there was greater sensitivity in the lower cut-off value and greater specificity in the higher cut-off value. LVEF at rest and stress, as well as VDF and VSF at rest and stress had high agreement values. The values of SSS, SRS and SDS presented moderate agreement. There was an apparent decrease of DeltaLVEF in Rb-82, however a similar trend was not observed in the MIBI, considering that the differences were not significant in relation to the number of vessels with stenosis in both radioisotopes (p > 0.05). In another analysis, a significant difference (p = 0.024) between the normal and altered groups was found of ventricular function variable and global CFR. In the altered group with global CFR < 2.0 there was a reduction of DeltaLVEF in 2.7%.Conclusion: 82Rb PET-CT has a greater accuracy and diagnostic accuracy of myocardial perfusion assessment in relation to MIBI SPECT, including reclassification of the evaluated groups that went from small to moderate perfusion defect extension. The LVEF stress in the general population suggests a higher value in 82Rb (acquisition of the exam at peak stress). There would be a suggestion that if the CAG group changed, the overall CFR would be reduced; in which greater degrees of coronary stenosis to CAG, the global CFR would decrease; and there would be a decrease of DeltaLVEF in 82Rb, the greater the number of vessels obstructed to CAG. The relation to reserve LVEF and overall CFR in 82Rb was significant with decrease in DeltaLVEF of the group with altered global CFR
|
Page generated in 0.1216 seconds