• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 20
  • 17
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zavádění strojového překladu v prostředí MSP / Implementing Machine Translation in an SME

Hermanová, Barbora January 2015 (has links)
The thesis deals with the topic of implementation of machine translation (MT) in an SME with an emphasis on legal translation. The theoretical part brings together the existing research relevant for this topic, focusing in particular on the specifics of MT between Czech and English, the task of post-editing (PEMT), including the skills and competences required from post-editors, recommendations for, and experience with, MT implementation, MT evaluation, PEMT productivity and translator attitudes towards MT. In its empirical part, the thesis draws on a case study of MT implementation in a Czech language service provider (LSP), with a focus on selecting a suitable MT tool and incorporating it in the workflow. Furthermore, an experiment is performed with professional translators, aimed at measuring productivity of translation and post-editing in terms of the time spent in the respective tasks and analysing and comparing selected aspects of the output produced by the translators and post-editors participating in the experiment. The analytical model employed is an error-based human evaluation model. Lastly, a questionnaire is used to ascertain the experience of translators/post-editors with MT and their attitudes towards this technology. The thesis ultimately provides a set of findings that can be used...
12

Directing Post-Editors’ Attention to Machine Translation Output that Needs Editing through an Enhanced User Interface: Viability and Automatic Application via a Word-level Translation Accuracy Indicator

Gilbert, Devin Robert 13 July 2022 (has links)
No description available.
13

Automatická korektura chyb ve výstupu strojového překladu / Automatic Error Correction of Machine Translation Output

Variš, Dušan January 2016 (has links)
We present MLFix, an automatic statistical post-editing system, which is a spiritual successor to the rule- based system, Depfix. The aim of this thesis was to investigate the possible approaches to automatic identification of the most common morphological errors produced by the state-of-the-art machine translation systems and to train sufficient statistical models built on the acquired knowledge. We performed both automatic and manual evaluation of the system and compared the results with Depfix. The system was mainly developed on the English-to- Czech machine translation output, however, the aim was to generalize the post-editing process so it can be applied to other language pairs. We modified the original pipeline to post-edit English-German machine translation output and performed additional evaluation of this modification. Powered by TCPDF (www.tcpdf.org)
14

Modèles de traduction évolutifs / Evolutive translation models

Blain, Frédéric 23 September 2013 (has links)
Bien que la recherche ait fait progresser la traduction automatique depuis plusieurs années, la sortie d’un système automatisé ne peut être généralement publiée sans avoir été révisée humainement au préalable, et corrigée le cas échéant. Forts de ce constat, nous avons voulu exploiter ces retours utilisateurs issus du processus de révision pour adapter notre système statistique dans le temps, au moyen d’une approche incrémentale.Dans le cadre de cette thèse Cifre-Défense, nous nous sommes donc intéressés à la postédition, un des champs de recherche les plus actifs du moment, et qui plus est très utilisé dans l’industrie de la traduction et de la localisation.L’intégration de retours utilisateurs n’est toutefois pas une tâche aussi évidente qu’il n’y paraît. D’une part, il faut être capable d’identifier l’information qui sera utile au système, parmi l’ensemble des modifications apportées par l’utilisateur. Pour répondre à cette problématique, nous avons introduit une nouvelle notion (les « Actions de Post-Édition »), et proposé une méthodologie d’analyse permettant l’identification automatique de cette information à partir de données post-éditées. D’autre part, concernant l’intégration continue des retours utilisateurs nous avons développé un algorithme d’adaptation incrémentale pour un système de traduction statistique, lequel obtient des performances supérieures à la procédure standard. Ceci est d’autant plus intéressant que le développement et l’optimisation d’un tel système de traduction estune tâche très coûteuse en ressources computationnelles, nécessitant parfois jusqu’à plusieurs jours de calcul.Conduits conjointement au sein de l’entreprise SYSTRAN et du LIUM, les travaux de recherche de cette thèse s’inscrivent dans le cadre du projet ANR COSMAT 1. En partenariat avec l’INRIA, ce projet avait pour objectif de fournir à la communauté scientifique un service collaboratif de traduction automatique de contenus scientifiques. Outre les problématiques liéesà ce type de contenu (adaptation au domaine, reconnaissance d’entités scientifiques, etc.), c’est l’aspect collaboratif de ce service avec la possibilité donnée aux utilisateurs de réviser les traductions qui donne un cadre applicatif à nos travaux de recherche. / Although machine translation research achieved big progress for several years, the output of an automated system cannot be published without prior revision by human annotators. Based on this fact, we wanted to exploit the user feedbacks from the review process in order to incrementally adapt our statistical system over time.As part of this thesis, we are therefore interested in the post-editing, one of the most active fields of research, and what is more widely used in the translation and localization industry.However, the integration of user feedbacks is not an obvious task. On the one hand, we must be able to identify the information that will be useful for the system, among all changes made by the user. To address this problem, we introduced a new concept (the “Post-Editing Actions”), and proposed an analysis methodology for automatic identification of this information from post-edited data. On the other hand, for the continuous integration of user feedbacks, we havedeveloped an algorithm for incremental adaptation of a statistical machine translation system, which gets higher performance than the standard procedure. This is even more interesting as both development and optimization of this type of translation system has a very computational cost, sometimes requiring several days of computing.Conducted jointly with SYSTRAN and LIUM, the research work of this thesis is part of the French Government Research Agency project COSMAT 2. This project aimed to provide a collaborative machine translation service for scientific content to the scientific community. The collaborative aspect of this service with the possibility for users to review the translations givesan application framework for our research.
15

Exploitation d’informations riches pour guider la traduction automatique statistique / Complex Feature Guidance for Statistical Machine Translation

Marie, Benjamin 25 March 2016 (has links)
S'il est indéniable que de nos jours la traduction automatique (TA) facilite la communication entre langues, et plus encore depuis les récents progrès des systèmes de TA statistiques, ses résultats sont encore loin du niveau de qualité des traductions obtenues avec des traducteurs humains.Ce constat résulte en partie du mode de fonctionnement d'un système de TA statistique, très contraint sur la nature des modèles qu'il peut utiliser pour construire et évaluer de nombreuses hypothèses de traduction partielles avant de parvenir à une hypothèse de traduction complète. Il existe cependant des types de modèles, que nous qualifions de « complexes », qui sont appris à partir d'informations riches. Si un enjeu pour les développeurs de systèmes de TA consiste à les intégrer lors de la construction initiale des hypothèses de traduction, cela n'est pas toujours possible, car elles peuvent notamment nécessiter des hypothèses complètes ou impliquer un coût de calcul très important. En conséquence, de tels modèles complexes sont typiquement uniquement utilisés en TA pour effectuer le reclassement de listes de meilleures hypothèses complètes. Bien que ceci permette dans les faits de tirer profit d'une meilleure modélisation de certains aspects des traductions, cette approche reste par nature limitée : en effet, les listes d'hypothèses reclassées ne représentent qu'une infime partie de l'espace de recherche du décodeur, contiennent des hypothèses peu diversifiées, et ont été obtenues à l'aide de modèles dont la nature peut être très différente des modèles complexes utilisés en reclassement.Nous formulons donc l'hypothèse que de telles listes d'hypothèses de traduction sont mal adaptées afin de faire s'exprimer au mieux les modèles complexes utilisés. Les travaux que nous présentons dans cette thèse ont pour objectif de permettre une meilleure exploitation d'informations riches pour l'amélioration des traductions obtenues à l'aide de systèmes de TA statistique.Notre première contribution s'articule autour d'un système de réécriture guidé par des informations riches. Des réécritures successives, appliquées aux meilleures hypothèses de traduction obtenues avec un système de reclassement ayant accès aux mêmes informations riches, permettent à notre système d'améliorer la qualité de la traduction.L'originalité de notre seconde contribution consiste à faire une construction de listes d'hypothèses par passes multiples qui exploitent des informations dérivées de l'évaluation des hypothèses de traduction produites antérieurement à l'aide de notre ensemble d'informations riches. Notre système produit ainsi des listes d'hypothèses plus diversifiées et de meilleure qualité, qui s'avèrent donc plus intéressantes pour un reclassement fondé sur des informations riches. De surcroît, notre système de réécriture précédent permet d'améliorer les hypothèses produites par cette deuxième approche à passes multiples.Notre troisième contribution repose sur la simulation d'un type d'information idéalisé parfait qui permet de déterminer quelles parties d'une hypothèse de traduction sont correctes. Cette idéalisation nous permet d'apporter une indication de la meilleure performance atteignable avec les approches introduites précédemment si les informations riches disponibles décrivaient parfaitement ce qui constitue une bonne traduction. Cette approche est en outre présentée sous la forme d'une traduction interactive, baptisée « pré-post-édition », qui serait réduite à sa forme la plus simple : un système de TA statistique produit sa meilleure hypothèse de traduction, puis un humain apporte la connaissance des parties qui sont correctes, et cette information est exploitée au cours d'une nouvelle recherche pour identifier une meilleure traduction. / Although communication between languages has without question been made easier thanks to Machine Translation (MT), especially given the recent advances in statistical MT systems, the quality of the translations produced by MT systems is still well below the translation quality that can be obtained through human translation. This gap is partly due to the way in which statistical MT systems operate; the types of models that can be used are limited because of the need to construct and evaluate a great number of partial hypotheses to produce a complete translation hypothesis. While more “complex” models learnt from richer information do exist, in practice, their integration into the system is not always possible, would necessitate a complete hypothesis to be computed or would be too computationally expensive. Such features are therefore typically used in a reranking step applied to the list of the best complete hypotheses produced by the MT system.Using these features in a reranking framework does often provide a better modelization of certain aspects of the translation. However, this approach is inherently limited: reranked hypothesis lists represent only a small portion of the decoder's search space, tend to contain hypotheses that vary little between each other and which were obtained with features that may be very different from the complex features to be used during reranking.In this work, we put forward the hypothesis that such translation hypothesis lists are poorly adapted for exploiting the full potential of complex features. The aim of this thesis is to establish new and better methods of exploiting such features to improve translations produced by statistical MT systems.Our first contribution is a rewriting system guided by complex features. Sequences of rewriting operations, applied to hypotheses obtained by a reranking framework that uses the same features, allow us to obtain a substantial improvement in translation quality.The originality of our second contribution lies in the construction of hypothesis lists with a multi-pass decoding that exploits information derived from the evaluation of previously translated hypotheses, using a set of complex features. Our system is therefore capable of producing more diverse hypothesis lists, which are globally of a better quality and which are better adapted to a reranking step with complex features. What is more, our forementioned rewriting system enables us to further improve the hypotheses produced with our multi-pass decoding approach.Our third contribution is based on the simulation of an ideal information type, designed to perfectly identify the correct fragments of a translation hypothesis. This perfect information gives us an indication of the best attainable performance with the systems described in our first two contributions, in the case where the complex features are able to modelize the translation perfectly. Through this approach, we also introduce a novel form of interactive translation, coined "pre-post-editing", under a very simplified form: a statistical MT system produces its best translation hypothesis, then a human indicates which fragments of the hypothesis are correct, and this new information is then used during a new decoding pass to find a new best translation.
16

Vyhlídky překladatelské profese v éře moderních technologií: interdisciplinární pohled / Prospects of Human Translation in the Era of Modern Technology: An Interdisciplinary Perspective

Hrách, Ondřej January 2020 (has links)
Modern technology affects all aspects of human life, and translation is not an exception. The development of translation technology -computer-assisted translation (CAT) and machine translation (MT)- is causing shifts in professional competencies and significant changes in the work of human translators, who are concerned about the future of their profession. Furthermore, insufficient collaboration between translators and technology developers leads to dissatisfaction with translation tools, contempt for machine translation, and mutual misunderstandings. The aim of this master's thesis is to promote the dialogue between professional translators and translation technology experts. First, a questionnaire survey is conducted among translators; then, its results are consulted with experts in translation technology. It is confirmed that the inevitable changes do not mean that the profession will become obsolete, but rather transformed. In addition, there are various possibilities for collaboration between translators and developers. However, for this collaboration to be as effective as possible, it will be necessary to address the differences between the views of both sides.
17

[en] AUTOMATIC TRANSLATION IN TRANSLATION MEMORY SYSTEMS: A COMPARATIVE STUDY OF TWO WORK METHODS / [pt] TRADUÇÃO AUTOMÁTICA EM AMBIENTES DE MEMÓRIA DE TRADUÇÃO: UM ESTUDO COMPARATIVO DE DOIS MÉTODOS DE TRABALHO

JORGE MARIO DAVIDSON 26 October 2021 (has links)
[pt] Esta dissertação discute a utilização de sistemas de tradução automática em ambientes de memória de tradução (CAT), uma modalidade de trabalho cada vez mais presente no mercado de tradução especializada atual. Foi realizado um estudo experimental envolvendo quatro tradutores profissionais especializados na área de informática. Cada um dos profissionais traduziu dois textos, um deles de marketing de tecnologia e o outro altamente técnico, utilizando diferentes modalidades de trabalho. O objetivo do estudo foi verificar a existência de diferenças entre o uso de tradução automática com pós-edição no nível de segmento e o uso de tradução automática como sugestão no nível de subsegmento. As traduções foram analisadas utilizando recursos de linguística computacional por meio das seguintes métricas: variedade lexical, densidade lexical, distância de edição, considerando sequências de classes gramaticais, e produtividade. Para efeitos comparativos, foram incluídas no estudo experimental traduções 100 por cento humanas e traduções automáticas sem pós-edição. As métricas utilizadas permitiram observar diferenças nos resultados atribuíveis às modalidades de trabalho, bem como comparar os efeitos nos diferentes tipos de textos traduzidos. Finalmente, as diversas traduções de um dos textos foram submetidas à avaliação de leitores para determinar as preferências. / [en] This dissertation addresses the use of automatic translation in translation memory systems (CAT), a fast-growing modality of work in today s specialized translation market. An experimental study was conducted with four professional translators specializing in the field of computing. Each professional translated two texts, one about technology marketing and the other, a highly technical document, using different modalities of work. The purpose of the study was to identify any differences resulting from the use of automatic translation, with segment-based post-editing, and the use of automatic translation as sub-segment translation suggestions. The resources of computational linguistics were employed to analyze the translations, considering the following metrics: lexical diversity, lexical density, edit distance, taking into account grammatical sequences, and productivity. For comparative purposes, the experimental study included 100 percent human translations and automatic translations that were not submitted to post-editing. The metrics employed turned out differing results attributable to the modalities of work, and allowed for the comparison of the effects on the different types of texts translated. Finally, the multiple translations of one of the texts were submitted to the evaluation of the readers, to determine their preferences.
18

Computer-Assisted Translation: An Empirical Investigation of Cognitive Effort

Mellinger, Christopher Davey 28 April 2014 (has links)
No description available.
19

Pós-edição automática de textos traduzidos automaticamente de inglês para português do Brasil

Martins, Débora Beatriz de Jesus 10 April 2014 (has links)
Made available in DSpace on 2016-06-02T19:06:12Z (GMT). No. of bitstreams: 1 5932.pdf: 1110060 bytes, checksum: fe08b552e37f04451248c376cfc4454f (MD5) Previous issue date: 2014-04-10 / Universidade Federal de Minas Gerais / The project described in this document focusses on the post-editing of automatically translated texts. Machine Translation (MT) is the task of translating texts in natural language performed by a computer and it is part of the Natural Language Processing (NLP) research field, linked to the Artificial Intelligence (AI) area. Researches in MT using different approaches, such as linguistics and statistics, have advanced greatly since its beginning in the 1950 s. Nonetheless, the automatically translated texts, except when used to provide a basic understanding of a text, still need to go through post-editing to become well written in the target language. At present, the most common form of post-editing is that executed by human translators, whether they are professional translators or the users of the MT system themselves. Manual post-editing is more accurate but it is cost and time demanding and can be prohibitive when too many changes have to be made. As an attempt to advance in the state-of-the-art in MT research, mainly regarding Brazilian Portuguese, this research has as its goal verifying the effectiveness of using an Automated Post-Editing (APE) system in translations from English to Portuguese. By using a training corpus containing reference translations (good translations produced by humans) and translations produced by a phrase-based statistical MT system, machine learning techniques were applied for the APE creation. The resulting APE system is able to: (i) automatically identify MT errors and (ii) automatically correct MT errors by using previous error identification or not. The evaluation of the APE effectiveness was made through the usage of the automatic evaluation metrics BLEU and NIST, calculated for post-edited and not post-edited sentences. There was also manual verification of the sentences. Despite the limited results that were achieved due to the small size of our training corpus, we can conclude that the resulting APE improves MT quality from English to Portuguese. / O projeto de mestrado descrito neste documento tem como foco a pós-edição de textos traduzidos automaticamente. Tradução Automática (TA) é a tarefa de traduzir textos em língua natural desempenhada por um computador e faz parte da linha de pesquisa de Processamento de Línguas Naturais (PLN), vinculada à área de Inteligência Artificial (IA). As pesquisas em TA, utilizando desde abordagens linguísticas até modelos estatísticos, têm avançado muito desde seu início na década de 1950. Entretanto, os textos traduzidos automaticamente, exceto quando utilizados apenas para um entendimento geral do assunto, ainda precisam passar por pós-edição para que se tornem bem escritos na língua alvo. Atualmente, a forma mais comum de pós-edição é a executada por tradutores humanos, sejam eles profissionais ou os próprios usuários dos sistemas de TA. A pós-edição manual é mais precisa, mas traz custo e demanda tempo, especialmente quando envolve muitas alterações. Como uma tentativa para avançar o estado da arte das pesquisas em TA, principalmente envolvendo o português do Brasil, esta pesquisa visa verificar a efetividade do uso de um sistema de pós-edição automática (Automated Post-Editing ou APE) na tradução do inglês para o português. Utilizando um corpus de treinamento contendo traduções de referência (boas traduções produzidas por humanos) e traduções geradas por um sistema de TA estatística baseada em frases, técnicas de aprendizado de máquina foram aplicadas para o desenvolvimento do APE. O sistema de APE desenvolvido: (i) identifica automaticamente os erros de TA e (ii) realiza a correção automática da tradução com ou sem a identificação prévia dos erros. A avaliação foi realizada usando tanto medidas automáticas BLEU e NIST, calculadas para as sentenças sem e com a pós-edição; como analise manual. Apesar de resultados limitados pelo pequeno tamanho do corpus de treinamento, foi possível concluir que o APE desenvolvido melhora a qualidade da TA de inglês para português.
20

Cohesion in Translation: A Corpus Study of Human-translated, Machine-translated, and Non-translated Texts (Russian into English)

Bystrova-McIntyre, Tatyana 21 November 2012 (has links)
No description available.

Page generated in 0.0862 seconds