Spelling suggestions: "subject:"posteriori"" "subject:"osteriori""
61 |
Investigation of Compound Gauss-Markov Image FieldLin, Yan-Li 05 August 2002 (has links)
This Compound Gauss-Markov image model has been proven helpful in image restoration. In this model, a pixel in the image random field is determined by the surrounding pixels according to a predetermined line field. In this thesis, we restored the noisy image based upon the traditional Compound Gauss-Markov image field without the constraint of the model parameters introduced in the original work. The image is restored in two steps iteratively: restoring the line field by the assumed image field and restoring the image field by the just computed line field.
Two methods are proposed to replace the traditional method in solving for the line field. They are probability method and vector method. In probability method, we break away from the limitation of the energy function Vcl(L) and the mystical system parameters Ckll(m,n) and£mw2. In vector method, the line field appears more reasonable than the original method. The image restored by our methods has a similar visual quality but a better numerical value than the original method.
|
62 |
Compression Techniques for Boundary Integral Equations - Optimal Complexity EstimatesDahmen, Wolfgang, Harbrecht, Helmut, Schneider, Reinhold 05 April 2006 (has links) (PDF)
In this paper matrix compression techniques in the
context of wavelet Galerkin schemes for boundary
integral equations are developed and analyzed that
exhibit optimal complexity in the following sense.
The fully discrete scheme produces approximate
solutions within discretization error accuracy
offered by the underlying Galerkin method at a
computational expense that is proven to stay
proportional to the number of unknowns.
Key issues are the second compression, that
reduces the near field complexity significantly,
and an additional a-posteriori compression.
The latter one is based on a general result
concerning an optimal work balance, that applies,
in particular, to the quadrature used to compute
the compressed stiffness matrix with sufficient
accuracy in linear time. The theoretical results
are illustrated by a 3D example on a nontrivial
domain.
|
63 |
Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimationApel, Thomas, Pester, Cornelia 31 August 2006 (has links) (PDF)
In this paper, a mixed boundary value problem for
the Laplace-Beltrami operator is considered for
spherical domains in $R^3$, i.e. for domains on
the unit sphere. These domains are parametrized
by spherical coordinates (\varphi, \theta),
such that functions on the unit sphere are
considered as functions in these coordinates.
Careful investigation leads to the introduction
of a proper finite element space corresponding to
an isotropic triangulation of the underlying
domain on the unit sphere. Error estimates are
proven for a Clément-type interpolation operator,
where appropriate, weighted norms are used.
The estimates are applied to the deduction of
a reliable and efficient residual error estimator
for the Laplace-Beltrami operator.
|
64 |
The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshesGrosman, Serguei 01 September 2006 (has links) (PDF)
Singularly perturbed reaction-diffusion problems
exhibit in general solutions with anisotropic
features, e.g. strong boundary and/or interior
layers. This anisotropy is reflected in the
discretization by using meshes with anisotropic
elements. The quality of the numerical solution
rests on the robustness of the a posteriori error
estimator with respect to both the perturbation
parameters of the problem and the anisotropy of the
mesh. The simplest local error estimator from the
implementation point of view is the so-called
hierarchical error estimator. The reliability
proof is usually based on two prerequisites:
the saturation assumption and the strengthened
Cauchy-Schwarz inequality. The proofs of these
facts are extended in the present work for the
case of the singularly perturbed reaction-diffusion
equation and of the meshes with anisotropic elements.
It is shown that the constants in the corresponding
estimates do neither depend on the aspect ratio
of the elements, nor on the perturbation parameters.
Utilizing the above arguments the concluding
reliability proof is provided as well as the
efficiency proof of the estimator, both
independent of the aspect ratio and perturbation
parameters.
|
65 |
Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov modelsXie, Li, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
In this thesis, we consider a robust state estimation problem for discrete-time, homogeneous, first-order, finite-state finite-alphabet hidden Markov models (HMMs). Based on Kolmogorov's Theorem on the existence of a process, we first present the Kolmogorov model for the HMMs under consideration. A new change of measure is introduced. The statistical properties of the Kolmogorov representation of an HMM are discussed on the canonical probability space. A special Kolmogorov measure is constructed. Meanwhile, the ergodicity of two expanded Markov chains is investigated. In order to describe the uncertainty of HMMs, we study probability distance problems based on the Kolmogorov model of HMMs. Using a change of measure technique, the relative entropy and the relative entropy rate as probability distances between HMMs, are given in terms of the HMM parameters. Also, we obtain a new expression for a probability distance considered in the existing literature such that we can use an information state method to calculate it. Furthermore, we introduce regular conditional relative entropy as an a posteriori probability distance to measure the discrepancy between HMMs when a realized observation sequence is given. A representation of the regular conditional relative entropy is derived based on the Radon-Nikodym derivative. Then a recursion for the regular conditional relative entropy is obtained using an information state method. Meanwhile, the well-known duality relationship between free energy and relative entropy is extended to the case of regular conditional relative entropy given a sub-[special character]-algebra. Finally, regular conditional relative entropy constraints are defined based on the study of the probability distance problem. Using a Lagrange multiplier technique and the duality relationship for regular conditional relative entropy, a finite horizon robust state estimator for HMMs with regular conditional relative entropy constraints is derived. A complete characterization of the solution to the robust state estimation problem is also presented.
|
66 |
Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov modelsXie, Li, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2004 (has links)
In this thesis, we consider a robust state estimation problem for discrete-time, homogeneous, first-order, finite-state finite-alphabet hidden Markov models (HMMs). Based on Kolmogorov's Theorem on the existence of a process, we first present the Kolmogorov model for the HMMs under consideration. A new change of measure is introduced. The statistical properties of the Kolmogorov representation of an HMM are discussed on the canonical probability space. A special Kolmogorov measure is constructed. Meanwhile, the ergodicity of two expanded Markov chains is investigated. In order to describe the uncertainty of HMMs, we study probability distance problems based on the Kolmogorov model of HMMs. Using a change of measure technique, the relative entropy and the relative entropy rate as probability distances between HMMs, are given in terms of the HMM parameters. Also, we obtain a new expression for a probability distance considered in the existing literature such that we can use an information state method to calculate it. Furthermore, we introduce regular conditional relative entropy as an a posteriori probability distance to measure the discrepancy between HMMs when a realized observation sequence is given. A representation of the regular conditional relative entropy is derived based on the Radon-Nikodym derivative. Then a recursion for the regular conditional relative entropy is obtained using an information state method. Meanwhile, the well-known duality relationship between free energy and relative entropy is extended to the case of regular conditional relative entropy given a sub-[special character]-algebra. Finally, regular conditional relative entropy constraints are defined based on the study of the probability distance problem. Using a Lagrange multiplier technique and the duality relationship for regular conditional relative entropy, a finite horizon robust state estimator for HMMs with regular conditional relative entropy constraints is derived. A complete characterization of the solution to the robust state estimation problem is also presented.
|
67 |
A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularitiesPester, Cornelia January 2006 (has links)
Zugl.: Chemnitz, Techn. Univ., Diss., 2006
|
68 |
Advances in a posteriori error estimation on anisotropic finite element discretizations /Kunert, Gerd. January 1900 (has links)
Thesis (doctoral)--Technische Universität Chemnitz, 2003. / Includes bibliographical references (p. 83-89) and index.
|
69 |
Adaptive space-time finite element methods for optimization problems governed by nonlinear parabolic systemsMeidner, Dominik. January 2007 (has links)
Heidelberg, Univ., Diss., 2008.
|
70 |
Word posterior probabilities for large vocabulary continuous speech recognitionWessel, Frank. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
|
Page generated in 0.0456 seconds