• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalable Analysis, Verification and Design of IC Power Delivery

Zeng, Zhiyu 2011 December 1900 (has links)
Due to recent aggressive process scaling into the nanometer regime, power delivery network design faces many challenges that set more stringent and specific requirements to the EDA tools. For example, from the perspective of analysis, simulation efficiency for large grids must be improved and the entire network with off-chip models and nonlinear devices should be able to be analyzed. Gated power delivery networks have multiple on/off operating conditions that need to be fully verified against the design requirements. Good power delivery network designs not only have to save the wiring resources for signal routing, but also need to have the optimal parameters assigned to various system components such as decaps, voltage regulators and converters. This dissertation presents new methodologies to address these challenging problems. At first, a novel parallel partitioning-based approach which provides a flexible network partitioning scheme using locality is proposed for power grid static analysis. In addition, a fast CPU-GPU combined analysis engine that adopts a boundary-relaxation method to encompass several simulation strategies is developed to simulate power delivery networks with off-chip models and active circuits. These two proposed analysis approaches can achieve scalable simulation runtime. Then, for gated power delivery networks, the challenge brought by the large verification space is addressed by developing a strategy that efficiently identifies a number of candidates for the worst-case operating condition. The computation complexity is reduced from O(2^N) to O(N). At last, motivated by a proposed two-level hierarchical optimization, this dissertation presents a novel locality-driven partitioning scheme to facilitate divide-and-conquer-based scalable wire sizing for large power delivery networks. Simultaneous sizing of multiple partitions is allowed which leads to substantial runtime improvement. Moreover, the electric interactions between active regulators/converters and passive networks and their influences on key system design specifications are analyzed comprehensively. With the derived design insights, the system-level co-design of a complete power delivery network is facilitated by an automatic optimization flow. Results show significant performance enhancement brought by the co-design.
2

Study of Wide Band Electromagnetic Bandgap Structure for Ground Bounce Noise Suppression in Package-level

Chin, Ta-Cheng 26 October 2010 (has links)
With electronic devices trending toward higher clock rates, lower voltage levels, and smaller form factors, the simultaneously switching noise (SSN), which is induced in package and printed circuit board, is one of the major factors affecting the performance and design of the high speed digital circuits. This noise will lead to false switching and malfunctioning in digital and/or analog circuits, and causes serious signal integrity (SI) and electromagnetic interference (EMI) problems for the high speed digital systems. Therefore, mitigating the SSN becomes a major challenge for the high speed circuits design. In this thesis, first of all, we introduce and discuss previously proposed solutions to suppress the SSN. These solutions include the use of decoupling capacitors, isolation moats, and electromagnetic bnadgap (EBG) structures. We analyzed the EBG structures and generated some EBG design rules. As the speed of digital circuits moving toward higher frequencies, the Double L-bridge EBG structure can be used to improve the performance of Hybrid EBG structure by employing the EBG design rules that were generated. The Double L-bridge EBG structure design improved the behavior at the high frequencies, which also maintained the low frequency performance. It is demonstrated numerically and experimentally. For fast estimating the stopband, we use one-dimensional lump circuit model. Then, we propose another structure, named Double Cross EBG structure. This design, compared to the Double L-bridge EBG structure, not only maintained the high frequency performance, but also improved the low frequency behavior. It is also both experimentally and numerically validated.
3

High Performance Distributed On-Chip Voltage Regulation for Modern Integrated Systems

Wang, Longfei 16 November 2018 (has links)
Distributed on-chip voltage regulation where multiple voltage regulators are distributed among different locations of the chip demonstrates advantages as compared to on-chip voltage regulation utilizing a single voltage regulator. Better on-chip voltage noise performance and faster transient response can be realized due to localized voltage regulation. Despite the advantages of distributed on-chip voltage regulation, unbalanced current sharing issue can occur among each voltage regulator, which has been demonstrated to deteriorate power conversion efficiency, stability, and reliability of the power delivery network. An effective balanced current sharing scheme that can be applied to most voltage regulator types is proposed to balance the current sharing. Furthermore, a relatively high on-chip temperature induced by increased power density leads to prominent voltage regulator performance degradations due to aging. The emerging type of digital low-dropout regulator is investigated regarding aging induced transient and steady state performance degradations. Reliability enhancement techniques for digital low-dropout regulators are developed and verified. Such techniques introduce negligible power and area overhead and do not affect the normal operations of digital low-dropout regulators. Reliability enhancement techniques also reduce the area overhead needed to mitigate aging induced performance degradations. Area overhead saving further translates into more space for increased number of distributed on-chip voltage regulators, enabling scalable on-chip voltage regulation.
4

Design of power delivery networks for noise suppression and isolation using power transmission lines

Huh, Suzanne Lynn 10 November 2011 (has links)
In conventional design of power delivery networks (PDNs), the PDN impedance is required to be less than the target impedance over the frequency range of interest to minimize the IR drop and to suppress the inductive noise during data transitions. As a result, most PDNs in high-speed systems consist of power and ground planes to provide a low-impedance path between the voltage regulator module (VRM) and the integrated circuit (IC) on the printed circuit board (PCB). For off-chip signaling, charging and discharging signal transmission lines induce return currents on the power and ground planes. The return current always follows the path of least impedance on the reference plane closest to the signal transmission line. The return current path plays a critical role in maintaining the signal integrity of the bits propagating on the signal transmission lines. The problem is that the disruption between the power and ground planes induces return path discontinuities (RPDs), which create displacement current sources between the power and ground planes. The current sources excite the plane cavity and cause voltage fluctuations. These fluctuations are proportional to the plane impedance since the current is drawn through the PDN by the driver. Therefore, low PDN impedance is required for power supply noise reduction. Alternatively, methods of preventing RPDs can be used to suppress power supply noise. Using a power transmission line (PTL) eliminates the discontinuity between the power and ground planes, thereby preventing the RPD effects. In this approach, transmission lines replace the power plane for conveying power from the VRM to each IC on the PCB. The PTL-based PDN enables both power and signal transmission lines to be referenced to the same ground plane so that a continuous current path can be formed, unlike the power-plane-based PDN. As a result, a closed current loop is achieved, and the voltage fluctuation caused by RPDs is removed in idealistic situations. Without the RPD-related voltage fluctuation, reducing the PDN impedance is not as critical as in the power-plane-based approach. Instead, the impedance of the PTL is determined by the impedance of the signaling circuits. To use the PTL-based PDN in a practical signaling environment, several issues need to be solved. First, the dc drop coming from the source termination of the PTL needs to be addressed. The driver being turned on and off dictates the current flow through the PTL, causing the dc drop to be dynamic, which depends on the data pattern. Second, impedance mismatch between the PTL and termination can occur due to manufacturing variations. Third, an increase in the number of PCB traces should be addressed by devising a method to feed more than one driver with one PTL. Lastly, the power required to transmit 1 bit of data should be optimized for the PTL by using a new signaling scheme and adjusting the impedance of the signaling circuit. Constant flow of current through the PDN is one solution proposed to address the first two issues. Constant current removes the dynamic characteristics of the dc drop by inducing a fixed amount of dc drop over the PTL. Moreover, constant current keeps the PTL fully charged at all times, and thereby eliminates the process of repeatedly charging and discharging the power transmission line. The constant current PTL (CCPTL) scheme maintains constant current flow regardless of the input data pattern. Early results on the CCPTL scheme have been discussed along with the measurements. The CCPTL scheme severs the link between the current flowing through the PTL and the output data of the I/O driver connected to it. Also, it eliminates the charging and discharging process of the PTL, thereby completely eliminating power supply noise in idealistic situations. To reduce any associated power penalty, a pseudo-balanced PTL (PBPTL) scheme is also proposed using the PTL concept. A pseudo-balanced (PB) signaling scheme, which uses an encoding technique to map N-bit data onto M-bit encoded data with fixed number of 1s and 0s, is applied. When the PB signaling scheme is combined with the PTL, the jitter performance improves significantly as compared to currently practiced design approach.
5

Modeling and simulation for signal and power integrity of electronic packages

Choi, Jae Young 06 November 2012 (has links)
The objective of this dissertation is to develop electrical modeling and co-simulation methodologies for signal and power integrity of package and board applications. The dissertation includes 1) the application of the finite element method to the optimization for decoupling capacitor selection and placement on a power delivery network (PDN), 2) the development of a PDN modeling method effective for multidimensional and multilayer geometries, 3) the analysis and modeling of return path discontinuities (RPDs), and 4) the implementation of the absorbing boundary condition for PDN modeling. The optimization technique for selection and placement of decoupling capacitors uses a genetic algorithm (GA) and the multilayer finite element method (MFEM), a PDN modeling method using FEM. The GA is customized for the decoupling problem to enhance the convergence speed of the optimization. The mathematical modifications necessary for the incorporation of the capacitor model into MFEM is also presented. The main contribution of this dissertation is the development of a new modeling method, the multilayer triangular element method (MTEM), for power/ground planes of a PDN. MTEM creates a surface mesh on each plane-pair using dual graphs; a non-uniform triangular mesh (Delaunay triangulation) and its orthogonal counterpart (Voronoi diagram), to which electromagnetic and equivalent circuit concepts are applied. The non-uniform triangulation is especially efficient for discretizing multidimensional and irregular geometries which are common in package and board PDNs. Moreover, MTEM generates a sparse, banded, and symmetric system matrix, which enables efficient computations. For a given plane-pair, MTEM extracts an equivalent circuit that is consistent with the physics-based planar-circuit model of a plane-pair. Thus, the values of the lumped elements can be simply calculated from the physical parameters, such as material properties and mesh geometries of each unit-cell. Consequently, the modeling of MTEM is flexible and easy to modify for further extensions, such as the incorporation of external circuits, e.g. decoupling capacitors and vertical interconnects. Power and ground planes provide paths for the return current of signal traces. Typically, planes have discontinuities such as via holes, plane cutouts, and split planes that disturb flow of signal return currents. At the discontinuity, return currents have to detour or switch to different layers, causing signal and power integrity problems. Therefore, a separate analysis of signal interconnects will neglect the significant coupling with a PDN, and the result will not be reliable. In this dissertation, the co-simulation of the signal and power integrity is presented focusing on the modeling of RPDs created by split planes, apertures, and vias. Plane resonance is one of the main sources of power integrity problems in package and board PDNs. A number of techniques have been developed and published in literature to reduce or prevent the resonance of a plane-pair. One of the techniques is to surround plane-pair edges with absorbing material that effectively damps the outgoing parallel-plate wave and minimizes the reflection. To model this behavior, the boundary condition of MTEM needs to be changed from its original form, the open-circuit boundary condition. In this dissertation, the application of the 1st order absorbing boundary condition to MTEM is presented.

Page generated in 0.0695 seconds