• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 21
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 84
  • 68
  • 37
  • 28
  • 26
  • 22
  • 21
  • 19
  • 18
  • 16
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Redes de Bragg em fibra óptica para medição de parâmetros relacionados as máquina elétricas / Fiber Bragg grating for electrical machines parameters measurement

Sousa, Kleiton de Morais 02 December 2016 (has links)
Finep; CAPES; CNPq; FA; ANEEL; ENGIE; / Esta tese apresenta aplicações de redes de Bragg em fibra óptica (FBG) para medição de parâmetros em máquinas elétricas. Os resultados apresentados permitem explorar novas técnicas de instrumentação que mostram o potencial de utilização de FBGs em ambientes industriais, como a medição de temperatura em uma usina hidrelétrica, e de investigação em laboratório, como no estudo da deformação dinâmica do estator de motores de indução. As técnicas de instrumentação apresentadas podem ser utilizadas isoladamente ou integradas, de forma a obter uma instrumentação multiparamétrica em usinas hidrelétricas ou em ambientes industriais que utilizam motores de indução em seu processo produtivo. A tese é organizada em forma de coletânea de artigos científicos, os quais apresentam a medição de temperatura e determinação de um modelo térmico de uma ponte retificadora utilizada para ajustar a corrente de campo do rotor de um gerador, um sensor de campo magnético, medição da deformação dinâmica do estator de motores de indução e caracterização de um acelerômetro óptico biaxial. Os resultados para medição de temperatura nos tiristores utilizados na ponte retificadora mostram a dependência entre temperatura e corrente de excitação, onde oscilações de corrente levam a oscilações de temperatura. O ajuste a partir do modelo térmico desenvolvido para o sistema apresenta um erro de 1,5oC em comparação com as medidas pelas FBGs. O sensor de campo é baseado na magnetostricção, sendo utilizadas duas FBGs. Uma delas para medição de deformação e outra para compensação de temperatura. No sensor de campo é apresentada a variação da resposta em função da temperatura, onde a magnetoestricção apresenta comportamento não-linear e sua saturação também varia em função temperatura. A medida de deformação do estator empregando as FBGs apresenta uma boa relação sinal ruído, com 80 dB para a harmônica fundamental, e as frequências observadas na vibração são as esperadas teoricamente. Além disso, com a utilização de duas FBGs pode-se observar a natureza girante da força magnética do entreferro. A medição de deformação do estator trata-se de uma técnica de análise inovadora, sendo a principal contribuição desta tese. Os resultados obtidos com a medida de deformação do estator são utilizados para validar as medidas de vibração de um acelerômetro óptico biaxial utilizado em um motor de indução. O acelerômetro óptico biaxial é insensível à variação de temperatura, podendo ser aplicado para medição de vibração em máquinas elétricas. / This paper presents the application of fiber Bragg gratings (FBG) for parameters measurement in electrical machines. The results allow to explore new instrumentation techniques and show the potential for industrial applications, presenting the measurement in an hydroelectric power plant, and laboratory research, such as the dynamic stator strain measurement. Each instrumentation technics presented in this paper has a potential to use isolated or integrated in order to obtain a multiparameter instrumentation in hydroelectric power plants or industrial environments that using induction motors in its production process. This paper is organized in a collection of articles, and the FBG applications are the temperature measurement and simulation of a rectifier bridge used to adjust the rotor field current of a power generator, a magnetic field sensor, , a biaxial optical accelerometer and the measurement of the stator dynamic strain of an induction motor. The results for the thyristor temperature measurement show the dependence of temperature and excitation current, where current oscillations lead to temperature fluctuations. The simulation of the thermal model presents a 1.5oC error compared to measures by the FBGs. The field sensor is based on magnetostriction, property where the magnetic material undergo deformation in the presence of a magnetic field. For this sensor are used two FBGs for temperature measurement and deformation in Terfenol-D, material with magnetostrictive properties. In the magnetic field sensor the response is a function of temperature, where the magnetostriction and saturation presents non-linear behavior varies as a function of temperature. Stator strain measurement using the FBGs has a good relationship signal noise, 80 dB for the fundamental harmonic and the observed frequencies in the vibration are theoretically expected. Moreover, with the use of two sensors can be determine the rotating nature of the air gap magnetic force. Finally, the biaxial optical accelerometer does not have is insensitive to temperature variations and can be applied for measuring vibration in electrical machines.
72

Controlador de demanda e emulador do consumidor residencial para manutenção do conforto do usuário em Smart Grids

Maciel, Savio Alencar 20 October 2014 (has links)
Neste trabalho é apresentada uma abordagem de controle de demanda para consumidores residenciais de baixa tensão, visando melhoria da eficiência energética em Smart Grids. Inicialmente, um emulador de cargas elétricas residenciais é modelado com base na literatura. O emulador é composto pelo modelo de um reservatório de aquecimento de água (boiler), o modelo de um aparelho de ar condicionado e também modelos de consumo de iluminação, televisores e uma geladeira. Utilizando o software Matlab foi realizada a implementação e simulação do emulador. Os principais algoritmos de controle de demanda são investigados, a fim de verificar o seu desempenho quando aplicados ao conjunto de cargas residenciais. Esses algoritmos normalmente realizam o controle de demanda a partir de um sistema de prioridades. Ainda, a partir dessa analise demostra-se que estes algoritmos consideram níveis de conforto do usuário, porém não permitem o acionamento de duas ou mais cargas em um mesmo período caso a demanda da residência ultrapasse um limite predeterminado. Portanto, propõem-se um algoritmo de controle de demanda adaptativo que utiliza o método de busca Rosenbrock, com o objetivo de sobrepujar tais limitações. O procedimento proposto realiza a operação das cargas residenciais de forma gradual considerando níveis de prioridade e parâmetros de conforto dos usuários. Demonstra-se através de simulações e experimentos que através do método proposto é possível realizar a ativação de diversas cargas concorrentemente, desde que respeitados os níveis de conforto e de demanda. Para obtenção dos resultados experimentais o controlador de demanda foi implementado em um sistema embarcado e testado com o emulador de cargas elétricas residenciais implementado em uma arquitetura HIL (Hardware-in-the-loop). Analisando os resultados, observou-se que o consumo de energia foi o mesmo para todos os cenários simulados sendo que a demanda se manteve abaixo dos limites parametrizados. Porém com o limitador de demanda ativo, se obteve uma redução de até 52% no tempo de aquecimento da água utilizando o controlador de demanda adaptativo, dessa forma o desconforto dos usuários pode ser minimizado. / This work presents an approach to control demand for residential low voltage consumers, aiming to improve energy efficiency in Smart Grids. Initially, an emulator of residential electric loads is modeled based on the literature. The emulator consists of a reservoir for water heating model, the model of an air conditioner and also models of consumption for lighting, televisions and a refrigerator. The implementation and simulation were performed using software Matlab. The demand control algorithms are investigated in order to verify its performance when applied to the set of residential loads. These algorithms typically perform control demand from a system of priorities. Still, from this analysis it demonstrates that these algorithms consider levels of user comfort, but do not allow the drive of two or more loads in the same period of residence if the demand exceeds the limit. Therefore, we propose a control algorithm that uses Rosenbrock search of demand adaptive method, aiming to overcome these limitations. The proposed procedure performs the operation of residential loads gradually considering priority levels and parameters of comfort of users. It is shown through simulations and experiments using the proposed method can perform the activation of several concurrently loads, provided they comply with the limits of comfort and demand. To obtain the experimental results demand the controller was implemented in an embedded system and tested with the emulator residential electrical loads implemented in a HIL (Hardware-in-theloop) architecture. Analyzing the results, it was observed that the power consumption is the same for all scenarios simulated and demand remained below parametric limits. But with the demand limiter active, we obtained a reduction of up to 52% in heat water using the demand controller adaptive, so the discomfort of the users can be minimized.
73

Index kvality napětí pro indikativní hodnocení kvality napětí v distribuční síti / Voltage quality index for distribution systems voltage quality benchmarking

Hausner, Josef January 2015 (has links)
This Master’s thesis deals with design of a new method for voltage quality benchmarking using voltage quality index. This index should determinate total voltage quality in the power grid and compare voltage quality in different places. There is design of several algorithms which value measured parameters in this thesis. The best suitable algorithm is selected. Program for this algorithm was compiled in GUI Matlab. The algorithm is verified by using measured parameters in this program. The last part of this thesis is focused on possible usage of created algorithm.
74

Electric utility planning methods for the design of one shot stability controls

Naghsh Nilchi, Maryam 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Reliability of the wide-area power system is becoming a greater concern as the power grid is growing. Delivering electric power from the most economical source through fewest and shortest transmission lines to customers frequently increases the stress on the system and prevents it from maintaining its stability. Events like loss of transmission equipment and phase to ground faults can force the system to cross its stability limits by causing the generators to lose their synchronism. Therefore, a helpful solution is detection of these dynamic events and prediction of instability. Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based on training data, DT generated rules for detecting event, predicting loss of synchronism, and selecting stabilizing control. To evaluate the accuracy of these rules, they were applied to testing data sets. To train DTs of this thesis, direct system measurements like generator rotor angles and bus voltage angles as well as calculated indices such as the rate of change of bus angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used. The initial method of this thesis included a response based DT only for instability prediction. In this method, time and location of the events were unknown and the one shot control was applied when the instability was predicted. The control applied was in the form of fast power changes on four different buses. Further, an event detection DT was combined with the instability prediction such that the data samples of each case was checked with event detection DT rules. In cases that an event was detected, control was applied upon prediction of instability. Later in the research, it was investigated that different control cases could behave differently in terms of the number of cases they stabilize. Therefore, a third DT was trained to select between two different control cases to improve the effectiveness of the methodology. It was learned through internship at Midwest Independent Transmission Operators (MISO) that post-event steady-state analysis is necessary for better understanding the effect of the faults on the power system. Hence, this study was included in this research.
75

Design changes to simplify maintenance and condition assessment on a tap changer / Designändringar för att förenkla underhåll och oljeprovtagning av en lindningskopplare

Fermér, Arvid, Modling, Jakob January 2023 (has links)
This master thesis investigates a redesign for a maintenance tube, used for both sampling and draining transformer oil from a tap changer compartment. With the current design, one can do one or the other of sampling and draining. The effect of this on a transformer site during maintenance means that personnel must bring extra equipment to do the maintenance routine. Along with the extra equipment, it also involves climbing the transformer an extra time to place the equipment for draining. The project aims to address several issues in the context of the product. Redesigning the product to reduce maintenance time, and therefore downtime and electrical outages. Reducing the number of times that the transformer housing needs to be climbed in order to perform maintenance work. This with the purpose of improving working environment for maintenance personnel. With the new design of the maintenance tube, draining and sampling can be done with the same pipe without the need for extra equipment. This is through a mechanism in the tube which allows the personnel to choose whether to drain oil from the bottom of the container or to take oil samples from an area in the tap-changer housing which gives more accurate results. The function of the mechanism can be described in the same way as a pen, where if you push the button, a tube will extract itself and close of the sampling inlets, enabling draining from the bottom. Push the button again and the same tube will retract, allowing you to take samples from the appropriate area again. The new design also adheres to the dimensional requirements needed for the design to fulfil the additional functions the tube has. The project results in a design which would not only fill requirements of functions but also preserves some of the previous parts along with their interfaces. This means that the new design could be installed on current versions of tap-changer models when the next service interval is due.
76

Inferring Topology of Networks With Hidden Dynamic Variables

Schmidt, Raoul, Haehne, Hauke, Hillmann, Laura, Casadiego, Jose, Witthaut, Dirk, Schäfer, Benjamin, Timme, Marc 04 June 2024 (has links)
nferring the network topology from the dynamics of interacting units constitutes a topical challenge that drives research on its theory and applications across physics, mathematics, biology, and engineering. Most current inference methods rely on time series data recorded from all dynamical variables in the system. In applications, often only some of these time series are accessible, while other units or variables of all units are hidden, i.e. inaccessible or unobserved. For instance, in AC power grids, frequency measurements often are easily available whereas determining the phase relations among the oscillatory units requires much more effort. Here, we propose a network inference method that allows to reconstruct the full network topology even if all units exhibit hidden variables. We illustrate the approach in terms of a basic AC power grid model with two variables per node, the local phase angle and the local instantaneous frequency. Based solely on frequency measurements, we infer the underlying network topology as well as the relative phases that are inaccessible to measurement. The presented method may be enhanced to include systems with more complex coupling functions and additional parameters such as losses in power grid models. These results may thus contribute towards developing and applying novel network inference approaches in engineering, biology and beyond.
77

Small Signal Stability Analysis of a Power System with a Grid Connected Wind Powered Permanent Magnet Synchronous Generator (PMSG)

Balibani, Siva Kumar January 2015 (has links) (PDF)
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system. Following any disturbance, such as sudden change in loads, actuations in the output of turbine and faults etc. it exhibits an oscillatory behaviour around the equilibrium state. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. These oscillations can be reduced by incorporating auxiliary controllers on generator excitation system. Power System Stabilizers (PSSs) were developed to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions especially in large interconnected power systems still remains a difficult and challenging task. More and more power electronic based controllers have been and will be used in power systems. Many of these controllers such as Static Var Compensators (SVCs), Static Synchronous Compensators (STATCOMs) and Unified Power Flow Controllers (UPFCs) etc., are incorporated in power transmission networks to improve its operational capability. In addition, some of the energy storage systems such as Battery Energy Storage systems (BESS), Super conducting Magnetic Energy Storage System (SMES) as well large non-conventional energy sources are also increasingly being integrated with the power grid. With large integration of these devices, there is a significant impact on system stability, more importantly on small signal oscillatory instability of the power system. This thesis primarily focuses on impact of such devices on small signal oscillatory stability of the power systems. More specifically in this thesis small signal stability analysis of a Single Machine Infinite Bus (SMIB) system with a grid connected wind powered Permanent Magnet Synchronous Generator (PMSG) has been presented. A SMIB system has been purposely chosen so that general conclusions can be obtained on the behaviour of the embedded STATCOM/Energy Source (ES) system on system stability. With a better understanding of the impact of such a system it would be probably possible to analyze more complicated multimachine power system and their impact on system stability. Small signal model of the complete system which comprises the generator, transmission network, inter connecting STATCOM, the wind power generator and all associated controllers has been developed. The performances of the system following a small disturbance at various operating conditions have been analyzed. To obtain quantitative estimates of the damping and synchronizing torques generated in the system, expressions for damping and synchronizing torque clients have been developed. With these analyses, the relative impact of the STATCOM and STATCOM with ES on system performance have been assessed. It is shown that with active and reactive power modulation capabilities effective and efficient control of small signal oscillations in power systems can be achieved.
78

Utilizando chaves ópticas para controle de qualidade de serviços em redes inteligentes / Using optical switches for quality of service control on smart grid

Bressam, Wagner Caldas 30 September 2016 (has links)
Redes inteligentes de distribuição de energia fornecem serviços com o potencial de aumentar a eficiência energética e a qualidade de vida da sociedade, mas possuem requisitos severos de tempo de resposta, confiabilidade, escalabilidade e QoS. As chaves ópticas são dispositivos comutadores de caminhos em fibras ópticas popularmente utilizados para trocas físicas de rotas. Neste trabalho sugere-se utilizar estes dispositivos para ativamente reorganizar uma rede com o objetivo de diminuir a latência de comunicação, visando atender aos requisitos de comunicações dos serviços de redes inteligentes. Foram estudadas as características de protocolos de roteamento conhecidos e aplicou-se o algoritmo de Dijkstra na criação de quatro heurísticas de otimização dos caminhos máximos em redes com chaves ópticas. Simulações realizadas mostram que as heurísticas propostas reduzem o número de saltos nos caminhos máximos, levando à redução de latência. É sugerida a continuação deste estudo aperfeiçoando as heurísticas propostas com outros mecanismos de otimização e diferentes métricas, como redução de congestionamento de tráfego e de consumo de energia na rede. / Smart grid networks provide services with the potential to increase energy efficiency and the quality of life of society, but have strict requirements regarding response time, reliability, scalability and QoS. The optical switches are fiber optic switching devices commonly used for physical route changing. In this study, it is suggested to use these devices to actively rearrange a network in order to reduce the communication latency, to meet the communications requirements of smart grid services. The characteristics of known routing protocols have been studied and the Dijkstra algorithm has been applied at the creation of four heuristics that aim to optimize the maximum paths in networks with optical switches. The simulations show that the heuristics reduce the maximum number of hops in the paths, leading to reductions in latency. It is suggested the continuation of this study improving the heuristics with other optimization engines and different metrics, such as reducing traffic congestion and energy.
79

Utilizando chaves ópticas para controle de qualidade de serviços em redes inteligentes / Using optical switches for quality of service control on smart grid

Bressam, Wagner Caldas 30 September 2016 (has links)
Redes inteligentes de distribuição de energia fornecem serviços com o potencial de aumentar a eficiência energética e a qualidade de vida da sociedade, mas possuem requisitos severos de tempo de resposta, confiabilidade, escalabilidade e QoS. As chaves ópticas são dispositivos comutadores de caminhos em fibras ópticas popularmente utilizados para trocas físicas de rotas. Neste trabalho sugere-se utilizar estes dispositivos para ativamente reorganizar uma rede com o objetivo de diminuir a latência de comunicação, visando atender aos requisitos de comunicações dos serviços de redes inteligentes. Foram estudadas as características de protocolos de roteamento conhecidos e aplicou-se o algoritmo de Dijkstra na criação de quatro heurísticas de otimização dos caminhos máximos em redes com chaves ópticas. Simulações realizadas mostram que as heurísticas propostas reduzem o número de saltos nos caminhos máximos, levando à redução de latência. É sugerida a continuação deste estudo aperfeiçoando as heurísticas propostas com outros mecanismos de otimização e diferentes métricas, como redução de congestionamento de tráfego e de consumo de energia na rede. / Smart grid networks provide services with the potential to increase energy efficiency and the quality of life of society, but have strict requirements regarding response time, reliability, scalability and QoS. The optical switches are fiber optic switching devices commonly used for physical route changing. In this study, it is suggested to use these devices to actively rearrange a network in order to reduce the communication latency, to meet the communications requirements of smart grid services. The characteristics of known routing protocols have been studied and the Dijkstra algorithm has been applied at the creation of four heuristics that aim to optimize the maximum paths in networks with optical switches. The simulations show that the heuristics reduce the maximum number of hops in the paths, leading to reductions in latency. It is suggested the continuation of this study improving the heuristics with other optimization engines and different metrics, such as reducing traffic congestion and energy.
80

A Networked Control Systems Framework for Smart Grids with Integrated Communication

Sivaranjani, S January 2014 (has links) (PDF)
Over the last decade, power systems have evolved dramatically around the world, owing to higher demand, stringent requirements on quality and environmental concerns that are becoming increasingly critical. With the introduction of new technologies like large-scale renewable energy, wide-area measurement based on phasor measurement units (PMUs) and consumer interaction in the distribution system, the power grid today has become more potent than ever before. Most of the defining features of the smart grid today rest on the integration of advanced communication capabilities into the grid. While communication infrastructure has become a key enabler for the smart grid, it also introduces new and complex control challenges that must be addressed. As we increasingly rely on information transmitted to distant areas over communication networks, it becomes imperative to model the effects of the communication system on the stability of the power grid. Several approaches exist in control theory to study such systems, widely referred to as Networked Control Systems (NCS). Networked control theory provides mathematical tools for system stability analysis and control in the presence of communication delays, packet dropouts and disordering due to transmission of sensor and actuator signals via a limited communication network. In this thesis, a networked control framework for smart grids with integrated commu-nication infrastructure (ICT) is developed. In particular, a networked control systems perspective is developed for two scenarios - wide-area monitoring control, and coordinated control of distributed generation sources. The effects of communication delays and packet dropouts on power system stability are modeled in detail. In the wide-area monitoring control problem, system state measurements are trans-mitted from remote locations through a communication network. The system is modeled as an NCS and a control design approach is presented to damp inter-area oscillations arising from various power system disturbances in the presence of communication constraints. In the coordinated control scenario, a power system with geographically dispersed sources is modeled as an NCS. A networked controller is designed to stabilize the system in the presence of small signal disturbances when system measurements are subject to communication delays and packet dropouts. A realistic output feedback networked control scheme that only uses voltage measurements from PMUs is also developed for practical implementation. The networked controllers designed in this thesis are validated against controllers designed by standard methods, by simulation on standard test systems. The networked controllers are found to enhance power system stability and load transfer capability even in the presence of severe packet dropouts and delays. Several extensions and theoretical problems motivated by this thesis are also proposed.

Page generated in 0.0508 seconds