• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 23
  • 17
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 218
  • 166
  • 104
  • 54
  • 43
  • 33
  • 28
  • 27
  • 20
  • 19
  • 18
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Projeto de controladores de sistemas de potência utilizando otimização bioinspirada / Power system controllers design using bio-inspired optimization

Peres, Wesley 28 March 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-06T12:01:24Z No. of bitstreams: 1 wesleyperes.pdf: 8553175 bytes, checksum: 6f7d954432a35224645decbd6b1e94f7 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-02T13:24:49Z (GMT) No. of bitstreams: 1 wesleyperes.pdf: 8553175 bytes, checksum: 6f7d954432a35224645decbd6b1e94f7 (MD5) / Made available in DSpace on 2016-07-02T13:24:49Z (GMT). No. of bitstreams: 1 wesleyperes.pdf: 8553175 bytes, checksum: 6f7d954432a35224645decbd6b1e94f7 (MD5) Previous issue date: 2016-03-28 / Os Estabilizadores de Sistemas de Potência (ESP) têm sido usados por décadas para fornecer amortecimento às oscilações eletromecânicas através do controle de excitação dos geradores síncronos. No presente trabalho, são propostas metodologias para o projeto de estabilizadores por meio do ajuste de ganho e fase. O ajuste é realizado de forma simultânea (coordenada), considerando múltiplos pontos de operação com o objetivo de garantir a robustez dos controladores. Duas estruturas são consideradas: a descentralizada, que utiliza somente sinais locais, e a hierárquica, que utiliza sinais remotos. A dinâmica do sistema elétrico de potência é modelada em espaço de estados e o procedimento de ajuste é formulado como um problema de otimização para a maximização do coeficiente de amortecimento do autovalor dominante do sistema em malha fechada considerando todos os pontos de operação. As metodologias, aqui abordadas, são baseadas em métodos de otimização bioinspirados no comportamento de enxames: Enxame de Partículas e Eco-localização de Morcegos. São desenvolvidas metodologias híbridas baseadas no acoplamento dos métodos bioinspirados com o Método do Gradiente Descendente para o refinamento dos ganhos dos controladores de forma a melhorar a busca local do processo de otimização. Com o objetivo de manter a diversidade da população, estratégias baseadas em multipopulações também são propostas. As metodologias propostas foram validadas através da simulação de sistemas teste de pequeno e médio porte, que são normalmente utilizados na literatura especializada. Os resultados são considerados promissores e acredita-se que as metodologias propostas possam ser de grande valor nessa área de conhecimento. / Power system stabilizers have been used for decades in order to provide the necessary damping of power system oscillations through generators excitation control. In this thesis, methodologies for stabilizers design (gain and phase compensation tuning) are presented. All stabilizers are simultaneously designed (coordinated design) taking into account a set of pre-specified operating conditions in order to ensure robustness. Two control structures are considered: decentralized (based on the use of local signals) and hierarchical (that uses remote signals). The power system dynamic is modeled in state space and the tuning procedure is formulated as an optimization problem in order to maximize the damping coefficient associated to the dominant pole in closed-loop operation for all operating conditions. The proposed methodologies are based on optimization algorithms bio-inspired in swarm behavior: Particle Swarm Optimization and Bat Algorithm. Hybrid methodologies are developed through coupling bio-inspired methods to the Steepest Descent method in order to enhance the local search procedure during the optimization process (only the stabilizers gain are adjusted in the local search). Multipopulational approaches are also developed in order to prevent the population diversity lost. The proposed methodologies are validated by using small and medium-sized benchmark power systems. The results are considered to be promising and the proposed methodologies are found of a great value in this research field.
202

On monitoring methods and load modeling to improve voltage stability assessment efficiency

Genet, Benjamin 02 October 2009 (has links)
Power systems must face new challenges in the current environment. The energy market liberalization and the increase in the loading level make the occurrence of instability phenomena leading to large blackouts more likely. Existing tools must be improved and new tools must be developed to avoid them.<p><p>The aim of this thesis is the improvement of the voltage stability assessment efficiency. Two orientations are studied: the monitoring methods and the load modeling.<p><p>The purpose of the monitoring methods is to evaluate the voltage stability using only measurements and without running simulations. <p><p>The first approach considered is local. The parameters of the Thevenin equivalent seen from a load bus are assessed thanks to a stream of local voltage and current measurements. Several issues are investigated using measurements coming from complete time-domain simulations. The applicability of this approach is questioned.<p><p>The second approach is global and uses measurements acquired by a Wide-Area Measurement System (WAMS). An original approach with a certain prediction capability is proposed, along with intuitive visualizations that allow to understand the deterioration process leading to the collapse.<p><p>The load modeling quality is certainly the weak point of the voltage security assessment tools which run simulations to predict the stability of the power system depending on different evolutions. Appropriate load models with accurate parameters lead to a direct improvement of the prediction precision.<p><p>An innovative procedure starting from data of long measurement campaigns is proposed to automatically evaluate the parameters of static and dynamic load models. Real measurements taken in the Belgian power system are used to validate this approach.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
203

Reactive Power Planning And Operation of Power Systems with Wind Farms for Voltage Stability Improvement

Moger, Tukaram January 2015 (has links) (PDF)
In recent years, the electric power industry around the world is changing continuously due to transformation from regulated market structure to deregulated market structure. The main aim of the transformation of electric supply industry under open access environment is to overcome the some of the limitations faced by the vertically integrated system. It is believed that this transformation will bring in new technologies, integration of other sources of energy such as wind, solar, fuel cells, bio-gas, etc., which are self sustainable and competitive, and better choice for the consumers and so on. As a result, several new issues and challenges have emerged. One of the main issues in power systems is to support reactive power for maintaining the system voltage profile with an acceptable margin of security and reliability required for system operation. In this context, the thesis addresses some of the problems related to planning and operation of reactive power in power systems. Studies are mainly focused on steady state operation of grid systems, grid connected wind farms and distribution systems as well. The reactive power support and loss allocation using Y-bus approach is proposed. It computes the reactive power contribution from various reactive sources to meet the reactive load demand and losses. Further, the allocation of reactive power loss to load or sink buses is also computed. Detailed case studies are carried out on 11-bus equivalent system of Indian southern region power grid under different loading conditions and also tested on 259-bus equivalent system of Indian western region power grid. A comparative analysis is also carried out with the proportional sharing principle and one of the circuit based approach in the literature to highlight the features of the proposed approach. A new reactive power loss index is proposed for identification of weak buses in the system. The new index is computed from the proposed Y-bus approach for the system under intact condition as well as some severe contingencies cases. Fuzzy logic approach is used to select the important and severe line contingencies from the contingency list. The validation of weak load buses identification from the proposed reactive power loss index with that from other well known existing methods in the literature such as Q-V sensitivity based modal analysis and continuation power flow method is carried out to demonstrate the effectiveness of the proposed index. Then, a short-term reactive power procurement/optimal reactive power dispatch analysis is also carried out to determine the optimum size of the reactive compensation devices to be placed at the weak buses for reactive compensation performance analysis in the system. The proposed approach is illustrated on a sample 5-bus system, and tested on sample 10-bus equivalent system and 72-bus equivalent system of Indian southern region power grid. A comprehensive power flow analysis of PQ type models for wind turbine generating units is presented. The different PQ type models of fixed/semi-variable speed wind turbine generating units are considered for the studies. In addition, the variable speed wind turbine generating units are considered in fixed power factor mode of operation. Based on these models, a comparative analysis is carried out to assess the impact of wind generation on distribution and transmission systems. 27-bus equivalent distribution test system, 93-bus equivalent test system and SR 297-bus equivalent grid connected wind system are considered for the studies. Lastly, reactive power coordination for voltage stability improvement in grid connected wind farms with different types of wind turbine generating units based on fuzzy logic approach is presented. In the proposed approach, the load bus voltage deviation is minimized by changing the reactive power controllers according to their sensitivity using fuzzy set theory. The fixed/semi-variable speed wind turbine generating units are also considered in the studies because of its impact on overall system voltage performance even though they do not support the system for voltage unlike variable speed wind generators. 297-bus equivalent and 417-bus equivalent grid connected wind systems are considered to present the simulation results. A comparative analysis is also carried out with the conventional linear programming based reactive power optimization technique to highlight the features of the proposed approach.
204

Analysis And Development Of Voltage Stability Assessment Methods

Mahesh, S 06 1900 (has links) (PDF)
Voltage stability is the ability of the power system to maintain steady acceptable voltages at all the buses in a system under normal operating conditions and after being subjected to a disturbance. The increased consumption of electricity without the augmentation of the necessary transmission infrastructure has resulted in the overloading of the transmission lines. As a result, the transmission lines operate near the steady state stability limit. The transmission of large amounts of power through the lines results in the large voltage drops in the lines. Sudden disturbances like line or generator outage and fault in the transmission lines may occur because of natural or man made causes. Under the above mentioned conditions, the transmission system may not be able to supply the load demand. This results in drops in the system bus voltages which may be sudden or progressive. If the necessary remedial measures are not taken, then this may lead to blackout or collapse of the whole system. As a result of a number of voltage stability incidents reported from various countries, there is a widespread interest in understanding, characterizing and preventing this phenomena. This thesis is essentially concerned with analyzing the existing methods and the development of new methods for the assessment of voltage stability of power systems. We examine four existing methods for assessing voltage stability with regard to the computational effort involved in their calculation, the useful information we get by using them, their relative effectiveness in assessing the voltage stability and their consistency in predicting the voltage stability of the system. We also study the impact of the system conditions on several of these indices. Further, we propose a set of new indices which provide information similar to the conventional indices but are slightly different. The generalized circle diagram approach proposed earlier to study the variation of the system variables with respect to the independent node parameters is shown to be adoptable for finding the voltage stability limit of a system. It has been shown that the well known continuation power flow method used for voltage stability analysis is identical to the generalized circle diagram approach. A computationally simple approach, based on the Thevenin equivalent of the power system is used to determine the loadability limit of a system. In the continuation power flow method, it is inherently assumed that only one generator responds to the real power load increase of the system. However, an alternate view is presented where all the generators respond to the real power increase in the system and an algorithm is proposed to realize this condition. Using this algorithm, the generation pattern of the system is modified so as to increase the loadability limit of the system considerably. The origin of the voltage instability in power systems can be traced to the load characteristics. Induction motors constitute a significant proportion of the total industrial and residential loads. Two algorithms that are useful to study the voltage stability of systems having induction machines have been presented and validated. These methods are based on the induction machine static equations. The first method is useful in assessing the impact of network disturbances on voltage stability and the second facilitates the computation of the loadability limit. A criterion has been proposed to find the stability limit, stable and unstable operating regions for a system considering various types of induction motor loads on the basis of which, a practical algorithm is proposed and validated to determine the stability of the induction motors driving different types of loads in a large power system. In addition, a method is developed to determine the stability aspects when the constant torque loads and the constant input power loads driven by induction motors operate in a power system, which contains other types of loads like the constant P - Q type of loads. Switching capacitors at the induction motor terminals is one of the ways by which voltage instability occurring due to the induction motor loads can be prevented. A new technique is proposed wherein knowing the capacitance and the slip at the instant of switching, the rotor dynamics following the switching and the existence of a steady state operating point following the switching can be predicted. This approach can be used to choose appropriate capacitances to be switched at the induction motor terminals to prevent its stalling following a sudden load disturbance.
205

POLYNOMIAL CURVE FITTING INDICES FOR DYNAMIC EVENT DETECTION IN WIDE-AREA MEASUREMENT SYSTEMS

Longbottom, Daniel W. 14 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In a wide-area power system, detecting dynamic events is critical to maintaining system stability. Large events, such as the loss of a generator or fault on a transmission line, can compromise the stability of the system by causing the generator rotor angles to diverge and lose synchronism with the rest of the system. If these events can be detected as they happen, controls can be applied to the system to prevent it from losing synchronous stability. In order to detect these events, pattern recognition tools can be applied to system measurements. In this thesis, the pattern recognition tool decision trees (DTs) were used for event detection. A single DT produced rules distinguishing between and the event and no event cases by learning on a training set of simulations of a power system model. The rules were then applied to test cases to determine the accuracy of the event detection. To use a DT to detect events, the variables used to produce the rules must be chosen. These variables can be direct system measurements, such as the phase angle of bus voltages, or indices created by a combination of system measurements. One index used in this thesis was the integral square bus angle (ISBA) index, which provided a measure of the overall activity of the bus angles in the system. Other indices used were the variance and rate of change of the ISBA. Fitting a polynomial curve to a sliding window of these indices and then taking the difference between the polynomial and the actual index was found to produce a new index that was non-zero during the event and zero all other times for most simulations. After the index to detect events was chosen to be the error between the curve and the ISBA indices, a set of power system cases were created to be used as the training data set for the DT. All of these cases contained one event, either a small or large power injection at a load bus in the system model. The DT was then trained to detect the large power injection but not the small one. This was done so that the rules produced would detect large events on the system that could potentially cause the system to lose synchronous stability but ignore small events that have no effect on the overall system. This DT was then combined with a second DT that predicted instability such that the second DT made the decision whether or not to apply controls only for a short time after the end of every event, when controls would be most effective in stabilizing the system.
206

Fuzzy-Rule-Based Failure Detection and Early Warning System for Lithium-ion Battery

Wu, Meng 05 September 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lithium-ion battery is one kind of rechargeable battery, and also renewable, sustainable and portable. With the merits of high density, slow loss of charge when spare and no memory effect, lithium-ion battery is widely used in portable electronics and hybrid vehicles. Apart from its advantages, safety is a major concern for Lithium-ion batteries due to devastating incidents with laptop and cell phone batteries. Overcharge and over-discharge are two of the most common electrical abuses a lithium-ion battery suffers. In this thesis, a fuzzy-rule-based system is proposed to detect the over-charge and over-discharge failure in early time. The preliminary results for the failure signatures of overcharged and over-discharged lithium-ion are listed based on the experimental results under both room temperature and high temperature. A fuzzy-rule-based model utilizing these failure signatures is developed and validated. For over-charge case, the abnormal increase of the surface temperature and decrease of the voltage are captured. While for over discharge case, unusual temperature increase during overcharge phases and abnormal current decrease during overcharge phases are obtained. The inference engine for fuzzy-rule-based system is designed based on these failure signatures. An early warning signal will be given by this algorithm before the failure occurs. This failure detection and early warning system is verified to be effective through experimental validation. In the validation test, the proposed methods are successfully implemented in a real-time system for failure detection and early warning. The result of validation is compatible with the design expectation. Finally an accurate failure detection and early warning system is built and tested successfully.
207

Electric utility planning methods for the design of one shot stability controls

Naghsh Nilchi, Maryam 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Reliability of the wide-area power system is becoming a greater concern as the power grid is growing. Delivering electric power from the most economical source through fewest and shortest transmission lines to customers frequently increases the stress on the system and prevents it from maintaining its stability. Events like loss of transmission equipment and phase to ground faults can force the system to cross its stability limits by causing the generators to lose their synchronism. Therefore, a helpful solution is detection of these dynamic events and prediction of instability. Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based on training data, DT generated rules for detecting event, predicting loss of synchronism, and selecting stabilizing control. To evaluate the accuracy of these rules, they were applied to testing data sets. To train DTs of this thesis, direct system measurements like generator rotor angles and bus voltage angles as well as calculated indices such as the rate of change of bus angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used. The initial method of this thesis included a response based DT only for instability prediction. In this method, time and location of the events were unknown and the one shot control was applied when the instability was predicted. The control applied was in the form of fast power changes on four different buses. Further, an event detection DT was combined with the instability prediction such that the data samples of each case was checked with event detection DT rules. In cases that an event was detected, control was applied upon prediction of instability. Later in the research, it was investigated that different control cases could behave differently in terms of the number of cases they stabilize. Therefore, a third DT was trained to select between two different control cases to improve the effectiveness of the methodology. It was learned through internship at Midwest Independent Transmission Operators (MISO) that post-event steady-state analysis is necessary for better understanding the effect of the faults on the power system. Hence, this study was included in this research.
208

Study of FACTS/ESS Applications in Bulk Power System

Zhang, Li 27 November 2006 (has links)
The electric power supply industry has evolved into one of the largest industries. Even though secure and reliable operation of the electric power system is fundamental to economy, social security and quality of modern life, the complicated power grid is now facing severe challenges to meet the high-level secure and reliable operation requirements. New technologies will play a major role in helping today's electric power industry to meet the above challenges. This dissertation has focused on some key technologies among them, including the emerging technologies of energy storage, controlled power electronics and wide area measurement technologies. Those technologies offer an opportunity to develop the appropriate objectives for power system control. The use of power electronics based devices with energy storage system integrated into them, such as FACTS/ESS, can provide valuable added benefits to improve stability, power quality, and reliability of power systems. The study in this dissertation has provided several guidelines for the implementation of FACTS/ESS in bulk power systems. The interest of this study lies in a wide range of FACTS/ESS technology applications in bulk power system to solve some special problems that were not solved well without the application of FACTS/ESS. The special problems we select to solve by using FACTS/ESS technology in this study include power quality problem solution by active power compensation, electrical arc furnace (EAF) induced problems solution, inter-area mode low frequency oscillation suppression, coordination of under frequency load shedding (UFLS) and under frequency governor control (UFGC), wide area voltage control. From this study, the author of this dissertation reveals the unique role that FACTS/ESS technology can play in the bulk power system stability control and power quality enhancement in power system. In this dissertation, almost all the studies are based on the real system problems, which means that the study results are special valuable to certain utilities that have those problems. The study in this dissertation can assist power industry choose the right FACTS/ESS technology for their intended functions, which will improve the survivability, minimize blackouts, and reduce interruption costs through the use of energy storage systems. / Ph. D.
209

Detection of Emerging Stability Phenomena in the Future Swedish Power System : Comparing RMS-Based and Waveform-Based Detection Techniques for Power Systems Dominated by Power Electronics

Larsson, Ellen, Carlsson, Carl January 2024 (has links)
Society is going through a change to be more sustainable, and one big step in that process is to convert the power grid from convectional power generation to increased part of renewable energy sources. Renewable energy sources often require power electronics such as converters to connect to the power grid, and power electronics can cause interference in the grid. This development in Sweden and rest of the Nordic countries is driven by the large increase of load based on power electronics. To maintain a stable power grid, it is essential to detect disturbances through measurement techniques adapted to the challenges that may arise.   The measurement techniques in the Swedish power grid have historically been based on power quality meters and RMS-based measurements, and this thesis focuses on the disturbances that RMS-based measurements may fail to detect. The objective is to compare the RMS-based measurements techniques available in the power grid with waveform measurement techniques developed to see how they could detect disturbances in the power grid. The first research question pertains to the characteristic frequency bandwidths within which a power system typically operates, and what frequency bandwidths a system could have with a significant amount of power electronics installed. The second research question concerns the measurement techniques.   This work consists of four main parts: bandwidth analysis of control systems for voltage source converter, RMS vs waveform detection techniques, interaction between converter and voltage perturbation, and realistic phenomena studies. The bandwidth analysis aims to determine the frequency range expected in future power systems, which in turn informs the minimum detection capabilities required for measurement techniques. This was achieved through calculations involving the control loops of converters, including the inner current control loop, outer control loop, and phase locked loop. Bode diagrams were generated for each control loop, with variables manipulated, and the short circuit ratio adjusted to determine the bandwidth of the control loop.   The RMS vs waveform detection techniques  phase was central to the study, involving simulations imitating various phenomena that could occur in the power grid. This was accomplished using two ideal sources and examining their interactions. The simulations included frequency perturbations, amplitude perturbations, and added oscillations apparent at sub-synchronous, super-synchronous, and high super-synchronous frequencies. Simulation results were presented for both RMS and waveform based defection techniques, simulating different reporting rates to mimic real measurement tools.   The third and fourth parts involved validating the RMS vs waveform detection techniques  results using real-case simulations. An HVDC model was employed to simulate the effects of voltage perturbation and observe the coupling over frequency mechanism. The same HVDC model was also used to simulate phenomena occurring in weak grids. Additionally, a wind park model was utilized to simulate the induction generator effect phenomena.   The findings reveal that the bandwidth of a power system undergoes significant expansion as the proportion of power electronics increases in the grid. Specifically, analysis of converter indicates a shift from under 50 Hz to several kHz in systems dominated by synchronous generators versus those dominated by power electronics. To effectively detect higher frequency oscillations within the grid, waveform measurement tools become essential, as classical RMS measurement tools are inadequate for capturing oscillations originating from power electronics. As power systems evolve towards dominance by power electronics, it becomes imperative to develop measurement systems capable of accurately detecting high frequency oscillations.   The recommendation of this thesis is to invest in waveform measurement tools alongside the already existing RMS-based ones to enhance the detection of disturbances, particularly those with super synchronous frequencies, addressing future power grid challenges.
210

Hydropower generator and power system interaction

Bladh, Johan January 2012 (has links)
After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Important tools for research, development and analysis are suitable mathematical models, numerical simulation methods and laboratory equipment. This doctoral thesis is devoted to studies of the electromechanical interaction between hydropower units and the power system. The work encompasses development of mathematical models, empirical methods for system identification, as well as numerical and experimental studies of hydropower generator and power system interaction. Two generator modelling approaches are explored: one based on electromagnetic field theory and the finite element method, and one based on equivalent electric circuits. The finite element model is adapted for single-machine infinite-bus simulations by the addition of a network equivalent, a mechanical equation and a voltage regulator. Transient simulations using both finite element and equivalent circuit models indicate that the finite element model typically overestimates the synchronising and damping properties of the machine. Identification of model parameters is performed both numerically and experimentally. A complete set of equivalent circuit parameters is identified through finite element simulation of standard empirical test methods. Another machine model is identified experimentally through frequency response analysis. An extension to the well-known standstill frequency response (SSFR) test is explored, which involves measurement and analysis of damper winding quantities. The test is found to produce models that are suitable for transient power system analysis. Both experimental and numerical studies show that low resistance of the damper winding interpole connections are vital to achieve high attenuation of rotor angle oscillations. Hydropower generator and power system interaction is also studied experimentally during a full-scale startup test of the Nordic power system, where multiple synchronised data acquisition devices are used for measurement of both electrical and mechanical quantities. Observation of a subsynchronous power oscillation leads to an investigation of the torsional stability of hydropower units. In accordance with previous studies, hydropower units are found to be mechanically resilient to subsynchronous power oscillations. However, like any other generating unit, they are dependent on sufficient electrical and mechanical damping. Two experimentally obtained hydraulic damping coefficients for a large Francis turbine runner are presented in the thesis.

Page generated in 0.0775 seconds