• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 12
  • 9
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ukládání elektrické energie do výhřevných plynů / Power to gas

Copek, Tomáš January 2016 (has links)
This master’s thesis deals with Power to Gas technology. In this concept electrical energy is used for hydrogen production via electrolysis. Hydrogen can be injected in limited amount into natural gas grid, used for power generation via fuel cells or as a reactant for methanation process. Characteristics of hydrogen and ways of hydrogen production, storage and transport are described. Fuel cells are described as a device which uses hydrogen for power production. Crucial part of this thesis consists of a description of Power to Gas concept and a design of Power to Gas unit with electrical power of 9,5 kW. Three different units were designed for three different times of day operation. Efficiency and economical assessment was carried out for these three Power to Gas units.
12

Power to gas : Bridging renewable electricity to the transport sector

Mohseni, Farzad January 2012 (has links)
Globally, transport accounts for a significant part of the total energy utilization and is heavily dominated by fossil fuels. The main challenge is how the greenhouse gas emissions in road transport can be addressed. Moreover, the use of fossil fuels in road transport makes most countries or regions dependent on those with oil and/or gas assets. With that said, the question arises of what can be done to reduce the levels of greenhouse gas emissions and furthermore reduce dependency on oil? One angle is to study what source of energy is used. Biomass is considered to be an important energy contributor in future transport and has been a reliable energy source for a long time. However, it is commonly known that biomass alone cannot sustain the energy needs in the transport sector by far. This work presents an alternative where renewable electricity could play a significant role in road transport within a relatively short time period. Today the amount of electricity used in road transport is negligible but has a potential to contribute substantially. It is suggested that the electricity should be stored, or “packaged” in a chemical manner, as a way of conserving the electrical energy. One way of doing so is to chemically synthesize fuels. It has been investigated how a fossil free transport system could be designed, to reach high levels of self-sufficiency. According to the studies, renewable electricity could have the single most important role in such a system.    Among the synthetic fuels, synthetic methane (also called synthetic biogas) is the main focus of the thesis. Hydrogen is obtained through water electrolysis, driven by electricity (preferable renewable), and reacted with carbon dioxide to produce synthetic methane. The concept of the mentioned process goes under the name Power to Gas. The electricity to fuel efficiency of such a process reaches about 50 %, but if utilizing excess heat produced during the electrolysis and the reaction, the total process efficiency can reach much higher levels. The economics of the process is as important as the technology itself in terms of large scale implementation. The price of electricity and biogas are the most important influences on the economic viability. The minimum “spread” between purchase and selling price can be determined to obtain a general perception of the economic feasibility. In this case biogas must be sold about 2.6 times higher than purchased electricity per kWh. / <p>QC 20130111</p>
13

Conception et conduite de systèmes d’électrolyse à haute température alimentés par des énergies renouvelables / Design and control of high temperature electrolyser systems fed with renewable energies

Petipas, Floriane 17 May 2013 (has links)
Le « Power-to-Gas » pourrait devenir une solution attractive pour le stockage des énergies renouvelables, pourvu que des électrolyseurs soient capables de fonctionner efficacement dans des conditions intermittentes à un coût abordable. Ce travail a pour objectif d'évaluer la faisabilité technique du fonctionnement intermittent de systèmes d'électrolyse à oxyde solide (SOEC) autour de 1073 K. Des conditions réalistes défavorables sont considérées, consistant en un système autonome sans source externe de chaleur et intégrant une compression d'hydrogène à 3 MPa. La problématique se compose de deux aspects : i) la gamme de fonctionnement du système, limitée à 60-100% en raison de gradients thermiques, est étendue via des stratégies de contrôle efficaces, ii) des procédures sont définies pour minimiser l'impact de l'intermittence sur la durée de vie. Premièrement, une stratégie de contrôle modulaire est proposée, consistant en l'utilisation de plusieurs unités indépendantes qui fonctionnent dans une gamme de puissance tolérable, ou sont arrêtées. La gamme de fonctionnement du système est ainsi étendue à 15-100% dans le cas de quatre unités. Une stratégie de contrôle complémentaire, consistant en un chauffage électrique interne, permet d'étendre la gamme de fonctionnement en réduisant les gradients thermiques, mais elle est susceptible de diminuer la durée de vie. Elle n'est donc appliquée qu'à une unité afin de suivre la courbe de charge et d'étendre la gamme de fonctionnement du système à 3-100%. Deuxièmement, 1800 cycles électriques on-off sont appliqués à une SOEC sans impact sur la dégradation, ce qui montre que des arrêts/démarrages répétés ne diminuent pas la durée de vie. De plus, des procédures de démarrage, standby et arrêt sont définies. Enfin, deux études de systèmes Eolien-SOEC et Solaire-SOEC fonctionnant pendant un an montrent que, avec les stratégies de contrôle implémentées, le système SOEC stocke la puissance appliquée avec un rendement de 91% sur PCS en moyenne, alors que les unités fonctionnent dans des conditions tolérables mis à part une unité qui suit la courbe de charge et est susceptible d'avoir une durée de vie diminuée. / Power-to-Gas could become an attractive solution for renewable electricity storage, provided that affordable electrolysers are able to operate efficiently under intermittent conditions. This work aims to assess the technical feasibility of operating intermittently a Solid Oxide Electrolysis Cell (SOEC) system around 1073 K. Realistic unfavourable conditions are considered, consisting in a standalone system operated with no external heat source and integrating hydrogen compression to 3 MPa. Two challenges are tackled in this work: i) the system power load range, limited to 60-100% due to thermal gradients, is extended via efficient control strategies, ii) procedures are defined to minimise the impact of the intermittency on the lifetime. First, a modular control strategy is proposed, consisting in the use of several SOEC units which are either operated in a tolerable power load range, or switched off. The system power load range is hence extended to 15-100% in the case of four units. A complementary control strategy, consisting in internal electrical heating, enables to extend the load range by reducing thermal gradients, but it may decrease the lifetime. Thus, it is applied to only one unit for it to follow the load curve and extend the system power load range to 3-100%. Secondly, 1800 on-off electric cycles are applied to an SOEC with no degradation increase, which shows that repeated start/stops do not decrease the lifetime. Start-up, standby and shut-down procedures are also defined. Finally, two case studies of Wind-SOEC and Solar-SOEC systems operated over one year show that, with the implemented control strategies, the SOEC system stores the applied power with an average efficiency of 91% vs. HHV, while units operate under tolerable conditions apart from one unit which follows the load curve and may have a decreased lifetime.
14

Energioptimering genom samverkan : en nulägesrapport av sektorkoppling i Sverige / Energy Optimization through Integration : a Status Report of Sector Coupling in Sweden

Näslund, Katarina, Stafverfeldt, Andrea January 2020 (has links)
För att Sverige ska uppnå de energimål som satts upp i enighet med Agenda 2030, är det av stor vikt att implementera mer förnybara resurser. Sektorkopplingsstrategier är en potentiell åtgärd vilket skulle optimera det svenska energisystemet. På sikt skulle det även kunna frigöra kapacitet, och därmed möjliggöra hantering av en större andel förnybara källor i elnätet. Syftet med den här studien är att bistå med en nulägesrapport av sektorkopplingsetablering i Sverige, med särskild fördjupning i region Gotland. Studien grundas i en omfattande litteraturstudie och kvalitativa intervjuer. Genom att studera tidigare litteratur inom området identifierades tekniker och metoder inom sektorkoppling, vars nuvarande utsträckning i Sverige kartlades. Den fördjupade datainsamlingen för studien var ostrukturerade kvalitativa intervjuer med projektledare och aktörer med relevans för Gotland. Resultatet från studien är en sammanställning av sektorkopplingtekniker samt hur dessa kan bidra till att öka flexibiliteten i energisystemet i allmänhet, och elnätet i synnerhet. Vidare kartlades projekt i Sverige som tillämpar dessa tekniker. Slutsatserna visar på att sektorkoppling redan är etablerat i Sverige, men befinner sig i ett tidigt stadium. Resultatet visade vidare att det krävs engagemang från kunder och aktörer, samt en viss standard i energisystemet för att möjliggöra en framgångsrik tillämpning av sektorkoppling i det svenska energisystemet. Resultaten belyser likväl att en fortsatt etablering av sektorkoppling kan komma att kräva ekonomiska incitament i form av bidrag och satsningar. / Including more renewable energy sources in the energy system is of great importance to enable Sweden to achieve its climate goals in unity of Agenda 2030. Sector coupling is a potential strategy for energy optimization, which in time could become a more established method to manage capacity issues, as well as permitting more renewable energy sources in the electricity grid. The purpose of this study is to compile a status report on current sector coupling in Sweden, with additional further investigation of region Gotland. The study is based on a comprehensive literature study as well as data collection through qualitative interviews with relevant stakeholders. Previous research and literature in the field enabled the identification of different technologies and methods relating to sector coupling. Qualitative data was gathered through unstructured interviews with represenatatives from companies and organizations having their focus set on energy planning in the Gotland region. The results consist of an assortment of various sector coupling technologies and their ability to increase the flexibility of the power grid and energy system in Sweden. In addition, several projects with diverse implementation of sector coupling strategies were also being mapped out. In conclusion, it became apparent that sector coupling is only at its earlier stages of implementation in Sweden. Further interest and commitment by customers and businesses is of great importance and needed to enable expansion of sector coupling technologies in Sweden. Moreover, the energy system requires standards, as well as financial incentives to promote further use of sector coupling in society.
15

Green hydrogen production at Igelsta CHP plant : A techno-economic assessment conducted at Söderenergi AB

ÖHMAN, AXEL January 2021 (has links)
The energy transition taking place in various parts of the world will have many effects on the current energy systems as an increasing amount of intermittent power supply gets installed every year. In Sweden, just as many other countries, this will cause both challenges and opportunities for today´s energy producers. Challenges that may arise along with an increasingly fluctuating electricity production include both power deficits at certain times and regions but also hours of over-production which can cause electricity prices to drop significantly. Such challenges will have to be met by both dispatchable power generation and dynamic consumption. Conversely, actors prepared to adapt to the new climate by implementing new technologies or innovative business models could benefit from the transition towards a fully renewable energy system.  This thesis evaluates the techno-economic potential of green hydrogen production at a combined heat and power plant with the objective to provide decision support to a district heat and electricity producer in Sweden. It was in the company’s interest to investigate how hydrogen production could help reduce the production cost of district heat as well as contribute to the reduction of greenhouse gases.  In the project, two separate business models: Power-to-gas and Power-to-power were evaluated on the basis of technical and economic performance and environmental impact. To do this, a mathematical model of the CHP plant and the hydrogen systems was developed in Python which optimizes the operation based on costs. The business models were then simulated for two different years with each year representing a distinctly different electricity market situation.  The main conclusions of the study show that Power-to-gas could already be profitable at a hydrogen retail price of 40 SEK per kg, which is the projected retail price for the transportation sector. The demand today is however limited but is expected to grow fast in the near future, especially within heavy transportation. Another limiting factor for hydrogen production showed to be the availability of storage space, as hydrogen gas even at pressures up to 200 bar require large volumes.  Power-to-power for frequency regulation was found to not be economically justifiable as the revenue for providing grid services could not outweigh the high investment costs for any of the simulated years. This resulted in a high levelized cost of energy at over 3000 SEK per MWh which was mostly due to the low capacity factor of the power-to-power system.  Finally, green hydrogen has the potential of replacing fossil fuels in sectors that is difficult to reach with electricity, for example long-haul road transport or the shipping industry. Therefore, green hydrogen production in large scale could help decarbonize many of society’s fossil-heavy segments. By also serving as a grid-balancer, hydrogen production in a power-to-gas process has the potential of becoming an important part of a renewable energy system. / Energiomställningen som äger rum i olika delar av världen kommer att ha många effekter på de nuvarande energisystemen eftersom en ökande mängd väderberoende kraftproduktion installeras varje år. I Sverige, precis som många andra länder, kommer detta att medföra både utmaningar och möjligheter för dagens energiproducenter. Utmaningar som kan uppstå tillsammans med en alltmer fluktuerande elproduktion inkluderar både kraftunderskott vid vissa tider och regioner men också timmar av överproduktion som kan få elpriserna att sjunka avsevärt. Sådana utmaningar måste mötas av både planerbar kraftproduktion och dynamisk konsumtion. Omvänt kan aktörer som är beredda att anpassa sig till det nya klimatet genom att implementera ny teknik eller innovativa affärsmodeller dra nytta av övergången till ett helt förnybart energisystem.  Denna rapport utvärderar den tekno-ekonomiska potentialen för produktion av grön vätgas vid ett kraftvärmeverk med målet att ge beslutsstöd till en fjärrvärme- och elproducent i Sverige. Det var i företagets intresse att undersöka hur vätgasproduktion kan bidra till att sänka produktionskostnaden för fjärrvärme samt bidra till att minska växthusgaser.  I projektet utvärderades två separata affärsmodeller: Power-to-gas och Power-to-power baserat på teknisk och ekonomisk prestanda samt miljöpåverkan. För att kunna göra detta utvecklades en matematisk modell i Python av kraftvärmeverket och vätgassystemen som optimerar driften baserat på kostnader. Affärsmodellerna simulerades sedan för två olika års elpriser för att undersöka modellens prestanda i olika typer av elmarknader.  De viktigaste slutsatserna i studien visar att Power-to-gas redan kan vara lönsamt till ett vätgaspris på 40 SEK per kg, vilket är det förväntade marknadspriset på grön vätgas for transportsektorn. Efterfrågan är idag begränsad men förväntas växa snabbt inom en snar framtid, särskilt inom tung transport. En annan begränsande faktor för vätgasproduktion visade sig vara tillgången på lagringsutrymme, eftersom vätgas även vid tryck upp till 200 bar kräver stora volymer.  Power-to-power för frekvensreglering visade sig inte vara ekonomiskt försvarbart, eftersom intäkterna för att tillhandahålla nättjänster inte kunde uppväga de höga investeringskostnaderna under några av de simulerade åren. Detta resulterade i en hög LCOE på över 3000 SEK per MWh, vilket främst berodde på Power-to-power-systemets låga utnyttjandegrad.  Slutligen kan det sägas att grön vätgas har stor potential att ersätta fossila bränslen i sektorer som är svåra att elektrifiera, exempelvis tunga vägtransporter eller sjöfart. Därför kan storskalig grön vätgasproduktion hjälpa till att dekarbonisera många av samhällets fossiltunga segment. Genom att dessutom fungera som balansering har väteproduktion i en Power-to-gas-process potential att bli en viktig del av ett system med stor andel förnybar energi.
16

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage

Peng, Dan 11 September 2013 (has links)
Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility of power grid operations. Underground storage of hydrogen with natural gas (UHNG) is proposed as a new energy storage technology, to be considered for utility-scale energy storage applications. UHNG is a composite technology: using electrolyzers to convert electrical energy to chemical energy in the form of hydrogen. The latter is then injected along with natural gas into existing gas distribution and storage facilities. The energy stored as hydrogen is recovered as needed; as hydrogen for industrial and transportation applications, as electricity to serve power demand, or as hydrogen-enriched natural gas to serve gas demand. The storage of electrical energy in gaseous form is also termed “Power to Gas”. Such large scale electrical energy storage is desirable to baseload generators operators, renewable energy-based generator operators, independent system operators, and natural gas distribution utilities. Due to the low density of hydrogen, the hydrogen-natural gas mixture thus formed has lower volumetric energy content than conventional natural gas. But, compared to the combustion of conventional natural gas, to provide the same amount of energy, the hydrogen-enriched mixture emits less carbon dioxide. This thesis investigates the dynamic behaviour, financial and environmental performance of UHNG through scenario-based simulation. A proposed energy hub embodying the UHNG principle, located in Southwestern Ontario, is modeled in the MATLAB/Simulink environment. Then, the performance of UHNG for four different scenarios are assessed: injection of hydrogen for long term energy storage, surplus baseload generation load shifting, wind power integration and supplying large hydrogen demand. For each scenario, the configuration of the energy hub, its scale of operation and operating strategy are selected to match the application involved. All four scenarios are compared to the base case scenario, which simulates the operations of a conventional underground gas storage facility. For all scenarios in which hydrogen production and storage is not prioritized, the concentration of hydrogen in the storage reservoir is shown to remain lower than 7% for the first three years of operation. The simulation results also suggest that, of the five scenarios, hydrogen injection followed by recovery of hydrogen-enriched natural gas is the most likely energy recovery pathway in the near future. For this particular scenario, it was also found that it is not profitable to sell the hydrogen-enriched natural gas at the same price as regular natural gas. For the range of scenarios evaluated, a list of benchmark parameters has been established for the UHNG technology. With a roundtrip efficiency of 39%, rated capacity ranging from 25,000 MWh to 582,000 MWh and rated power from 1 to 100 MW, UHNG is an energy storage technology suitable for large storage capacity, low to medium power rating storage applications.
17

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage

Peng, Dan 11 September 2013 (has links)
Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility of power grid operations. Underground storage of hydrogen with natural gas (UHNG) is proposed as a new energy storage technology, to be considered for utility-scale energy storage applications. UHNG is a composite technology: using electrolyzers to convert electrical energy to chemical energy in the form of hydrogen. The latter is then injected along with natural gas into existing gas distribution and storage facilities. The energy stored as hydrogen is recovered as needed; as hydrogen for industrial and transportation applications, as electricity to serve power demand, or as hydrogen-enriched natural gas to serve gas demand. The storage of electrical energy in gaseous form is also termed “Power to Gas”. Such large scale electrical energy storage is desirable to baseload generators operators, renewable energy-based generator operators, independent system operators, and natural gas distribution utilities. Due to the low density of hydrogen, the hydrogen-natural gas mixture thus formed has lower volumetric energy content than conventional natural gas. But, compared to the combustion of conventional natural gas, to provide the same amount of energy, the hydrogen-enriched mixture emits less carbon dioxide. This thesis investigates the dynamic behaviour, financial and environmental performance of UHNG through scenario-based simulation. A proposed energy hub embodying the UHNG principle, located in Southwestern Ontario, is modeled in the MATLAB/Simulink environment. Then, the performance of UHNG for four different scenarios are assessed: injection of hydrogen for long term energy storage, surplus baseload generation load shifting, wind power integration and supplying large hydrogen demand. For each scenario, the configuration of the energy hub, its scale of operation and operating strategy are selected to match the application involved. All four scenarios are compared to the base case scenario, which simulates the operations of a conventional underground gas storage facility. For all scenarios in which hydrogen production and storage is not prioritized, the concentration of hydrogen in the storage reservoir is shown to remain lower than 7% for the first three years of operation. The simulation results also suggest that, of the five scenarios, hydrogen injection followed by recovery of hydrogen-enriched natural gas is the most likely energy recovery pathway in the near future. For this particular scenario, it was also found that it is not profitable to sell the hydrogen-enriched natural gas at the same price as regular natural gas. For the range of scenarios evaluated, a list of benchmark parameters has been established for the UHNG technology. With a roundtrip efficiency of 39%, rated capacity ranging from 25,000 MWh to 582,000 MWh and rated power from 1 to 100 MW, UHNG is an energy storage technology suitable for large storage capacity, low to medium power rating storage applications.
18

Techno-economical modeling of a PtG plant for operational optimization in the context of gas grid injection in France / Teknisk-ekonomisk modellering av en PtG-anläggningför att optimera dess användning i gasnät i Frankrike

Duncan, Corey Scott January 2020 (has links)
Klimatförändringar är den enskilt största utmaningen som mänskligheten står inför under 2000-talet. För att ta itu med denna utmaning förutses förnybara energikällor en stor ökning av andelen primärenergi globalt. Den naturliga variabiliteten hos sol och vind kräver att energilagring används tillsammans med dem för en energisystemövergång. Power-to-Gas (PtG) -teknologier erbjuder en attraktiv lösning genom att möjliggöra omvandling av elektrisk energi till vätgas eller metan, vilket möjliggör integration över nätverk och sektorövergripande integration. Denna avhandling undersöker lönsamheten för en PtG-anläggning med enprimär applikation för att producera syntetisk metan (SNG) för injektion av naturgas(NG). En teknik-ekonomisk modell skapades för att simulera anläggningens drift under ett år och extrapolera resultaten för projektets livslängd. Modellen designades baserat på ett pilotprojekt som utvecklades i Frankrike med namnet HYCAUNAIS och har använt partner-samt litteraturdata för bearbetning. På grund av begränsningar i den lokala NG-nätkapaciteten undersöktes era scenarier som inkluderade att lägga till ytterligare investeringar som möjliggör ökad driftstid och intäktsströmmar, inklusive: fast elpris eller day-ahead (DA) marknadsdeltagande; nätuppgradering för ökad NG-nätkapacitet; och CH4 och H2 mobilitet. Elektrolysörers deltagande i frekvensbegränsningsreserven (FCR) ansågs också förökad lönsamhet. Resultaten visade att standardfallsscenariot (inga ytterligare investeringar) med deltagande på DA-elmarknaden var det mest attraktiva när det gäller tre undersökta mål: nettonuvärde (NPV), återbetalningsperiod (PBP) och nivåniserad metankostnad (LCOM). Driftstiden för standardfallet befanns vara cirka 90% av året; produktionen hindrades inte av begränsad nätkapacitet tillräckligt för att anse ytterligare investeringar nödvändiga. Vidare bör deltagande på DA-marknaden bestämmas av en upphörd betalningsvilja (WTP) för el i motsats till marginell vinst (MP). Att använda WTP som avgörande faktor tillät ökade driftstimmar och lägre LCOM. Men i alla undersökta scenarier var inga lönsamma; vilket innebär att marknadsförhållandena fortfarande måste förbättras kraftigt innan PtG kan få fart. En känslighetsanalys gjordes på standardfallsscenariot för att se vilka parametrar som påverkar lönsamheten mest och bör vara i fokus för vidare forskning och utveckling. SNG-taxan visade sig vara den mest inytelserika på NPV, vilket krävde att en tariff på minst 188 e=MWh (120 e=MWh användes för modellering) för att vara lönsam. Elpriset var det näst mest inytelserika och krävde ett genomsnittligt marknadspris på 25 e=MWh för att vara lönsamt. Eftersom PtG-teknik kan ge era externa fördelar som inte realiseras ekonomiskt av investerare, kan intäktsgenerering av dem ge ett sätt att förbättra lönsamheten. Detta inkluderar nätbalansering och exibilitet, avkolning, lägre nätkostnader ochförbättrad energisäkerhet. Sammanfattningsvis måste kapitalkostnaderna för utrustning,elpriser och avgifter i samband med dessa samt taxor för gröna gaser förbättras dramatiskt för att SNG-produktionen ska vara en attraktiv lösning för minskning och avkolning av el. / Climate change is the single largest challenge facing humanity in the 21st century. To tackle this challenge, renewable energies are seeing a large increase in primary energy share globally. The natural variableness of solar and wind requires energy storage to be used in conjuction with them for an energy system transition. Power-to-Gas (PtG) technologies offer an attractive solution by allowing conversion of electrical energy to hydrogen or methane, enabling cross-energy-network and cross-sectoral integration. This thesis investigates profitability of a PtG plant with a primary application of producing synthetic methane (SNG) for natural gas (NG) grid injection. A techno-economical model was created to simulate plant operation over one year and extrapolate the results for the project lifespan. The model was designed based off of a pilot project being developed in France named HYCAUNAIS and used partner as well as literature data for processing. Due to limitations inlocal NG grid capacity, several scenarios were investigated that included adding additional investments that allow increased operational time and revenue streams, including: fixed electrical price or day-ahead (DA) market participation; mesh upgrade for increased NG grid capacity; and CH4 and H2 mobility. Electrolyser participation in the frequency containment reserve (FCR) was also considered for increased profitability. The results determined the standard case scenario (no additional investments) with participation in the DA electricity market was the most attractive in terms of three objectives investigated: net present value (NPV), payback period (PBP) and levelized cost of methane (LCOM). The operational hours of the standard case was found to be approximately 90% of the year; production was not hindered by limited grid capacity sufficiently to deem additional investments necessary. Further, participation in the DA market should be determined by a cut-off willingness to pay (WTP) for electricity as opposed to marginal profit (MP). Using WTP as the determining factor allowed increased operational hours and lower LCOM. However, in all of the scenarios investigated, none were profitable; meaning that market conditions still need to greatly improve before PtG can gain momentum. A sensitivity analysis was done on the standard case scenario to see which parameters influence profitability the most and should be the focus of further research and development. The SNG tariff was found to be the most influential on NPV, requiring a tariff of at least 188 e=MWh (120 e=MWh was used for modeling) to be profitable. Electricity price was the second most inuential and required an average market price of 25 e=MWh to be profitable. As PtG technologies can provide several external benefits that are not economically realized by investors, monetization of them could provide a means of improving profitability. This includes, grid balancing and exibility, decarbonization, lower grid costs and improved energy security. Inconclusion, capital costs of equipment, electricity prices and fees associated to them, and tariffs for green gases all need to improve dramatically for SNG production tobe an attractive solution for electricity curtailment and decarbonization.
19

Evaluación ambiental de distintas tecnologías de almacenamiento de energía

Fernández Sepúlveda, Maite Lourdes 09 1900 (has links)
Seminario de Título entregado a la Universidad de Chile en cumplimiento parcial de los requisitos para optar al Título de Químico Ambiental. / Chile es un país en desarrollo que posee políticas energéticas comprometidas con el medio ambiente, para el 2035 se espera que un 60% de la energía producida en el país sea renovable y para el 2050 debe ser al menos de un 70%. Como algunos de los sistemas de energías renovables poseen una potencia de salida variable, es necesario trabajar con tecnologías de almacenamiento de energía para lograr una integración eficiente a los sistemas de electricidad en Chile y así poder utilizar toda la energía producida. El objetivo general de este trabajo es evaluar desde un punto de vista ambiental diez tipos de sistemas de almacenamiento de energía: almacenamiento por bombeo hídrico, almacenamiento por aire comprimido, almacenamiento kinésico, almacenamiento por celdas de combustible hidrógeno, almacenamiento Power-to-Gas, almacenamiento de combustible solar, almacenamiento con baterías de Plomo/Ácido, almacenamiento con baterías de litio, almacenamiento de baterías de flujo de Vanadio y almacenamiento térmico con materiales de cambio de fase, con el fin de entregar insumos relevantes como herramientas de diseño y planificación de los sistemas eléctricos y así contar con sistemas más sustentables con el medio ambiente y con mayor eficiencia energética. Para lograr lo anterior se realizó una revisión de la literatura medioambiental y la literatura de los sistemas de almacenamiento de energía logrando realizar una clasificación y caracterización de las distintas tecnologías considerando el tipo de almacenamiento que utilizan. También se tomaron en cuenta los materiales requeridos para su elaboración, sus procesos, componentes y aspectos operacionales, definiendo para el análisis como etapas del ciclo de vida: materias primas, implementación, operación y fin de su vida útil. Del eje ambiental se consideraron cinco aspectos aire, agua, suelo, flora y fauna, y las personas. Con esto se evalúa cada etapa del ciclo de vida de los sistemas de almacenamiento de energía en cada ámbito ambiental. Al analizar las distintas tecnologías desde el punto de vista de sus etapas del ciclo de vida podemos apreciar que cuando están en etapa de materias primas las que poseen un mayor nivel de impactos son el almacenamiento de bombeo hídrico y las baterías de Plomo/Ácido, la primera debido al tamaño del sistema y la segunda por el nivel de toxicidad de sus componentes. Al momento de implementar los sistemas de almacenamiento siguen predominando las baterías de Plomo/Ácido con mayores magnitudes de impactos. Luego durante su operación, el almacenamiento energético por bombeo hídrico tiene mayores impactos. Y al fin de su vida útil las baterías de Plomo/Ácido siguen siendo las que poseen un mayor nivel de daño por el nivel de toxicidad de sus componentes y que requieren de un cuidadoso manejo durante su reciclaje. En general durante todo su ciclo de vida, los sistemas con mayores grados de impactos ambientales negativos fueron las baterías de Plomo/Ácido y el almacenamiento por bombeo hídrico. Los tres sistemas que generan un menor número de impactos durante todo su ciclo de vida son el Combustible Solar, Power-to-gas y las celdas de combustible hidrógeno. / Chile is a developing country that has energy policies committed to the environment, by 2035 it is expected that 60% of the energy produced in the country will be renewable and by 2050 it should be at least 70%. As some of the renewable energy systems have a variable output power, it is necessary to work with energy storage technologies to achieve an efficient integration to the electricity systems in Chile and be able to use all the energy produced. The objective of this work is to evaluate from an environmental point of view ten types of energy storage systems: by water pumping, by compressed air, kinesics storage, by hydrogen fuel cells, Power-to-Gas storage, of solar fuel, with Lead-acid batteries, with Lithium batteries, of Vanadium flow batteries and thermal storage with phase change materials, in order to deliver relevant inputs such as design and planning tools and have more sustainable systems with the environment and greater energy efficiency. To achieve the above, a review of the environmental literature and the literature of the energy storage systems was carried out, achieving a classification and characterization of the different technologies considering the type of storage they use. The materials required for its elaboration, processes, components and operational aspects were also considered, defining for the analysis as life cycle stages: raw materials, implementation, operation and end of its useful life. On the environmental axis, five aspects were considered: air, water, soil, flora and fauna, and people. This evaluates each stage of the life cycle of the energy storage systems in each environmental area. When analyzing the different technologies from the point of view of their life cycle stages we can appreciate that when they are raw materials those that have a higher level of impacts are the Pumped Hydroelectric storage and Lead-Acid batteries, the first due to the size of the system and the second by the level of toxicity of its components. At the time of implement the storage systems Lead-Acid batteries are still predominating with greater impact magnitudes. Then during the operation, the Pumped Hydroelectric storage has greater impacts. And at the end of its useful life Lead-Acid Batteries are still those that have a higher level of damage due to the level of toxicity of its components and that require careful handling during recycling. In general, throughout its life cycle, the systems with the highest degrees of negative environmental impacts were Lead-Acid batteries and Pumped Hydroelectric storage. The three systems that generate a lower number of impacts throughout their life cycle are Solar Fuel, Power-to-gas and hydrogen fuel cells.
20

Conception et conduite de systèmes d'électrolyse à haute température alimentés par des énergies renouvelables

Petipas, Floriane 17 May 2013 (has links) (PDF)
Le " Power-to-Gas " pourrait devenir une solution attractive pour le stockage des énergies renouvelables, pourvu que des électrolyseurs soient capables de fonctionner efficacement dans des conditions intermittentes à un coût abordable. Ce travail a pour objectif d'évaluer la faisabilité technique du fonctionnement intermittent de systèmes d'électrolyse à oxyde solide (SOEC) autour de 1073 K. Des conditions réalistes défavorables sont considérées, consistant en un système autonome sans source externe de chaleur et intégrant une compression d'hydrogène à 3 MPa. La problématique se compose de deux aspects : i) la gamme de fonctionnement du système, limitée à 60-100% en raison de gradients thermiques, est étendue via des stratégies de contrôle efficaces, ii) des procédures sont définies pour minimiser l'impact de l'intermittence sur la durée de vie. Premièrement, une stratégie de contrôle modulaire est proposée, consistant en l'utilisation de plusieurs unités indépendantes qui fonctionnent dans une gamme de puissance tolérable, ou sont arrêtées. La gamme de fonctionnement du système est ainsi étendue à 15-100% dans le cas de quatre unités. Une stratégie de contrôle complémentaire, consistant en un chauffage électrique interne, permet d'étendre la gamme de fonctionnement en réduisant les gradients thermiques, mais elle est susceptible de diminuer la durée de vie. Elle n'est donc appliquée qu'à une unité afin de suivre la courbe de charge et d'étendre la gamme de fonctionnement du système à 3-100%. Deuxièmement, 1800 cycles électriques on-off sont appliqués à une SOEC sans impact sur la dégradation, ce qui montre que des arrêts/démarrages répétés ne diminuent pas la durée de vie. De plus, des procédures de démarrage, standby et arrêt sont définies. Enfin, deux études de systèmes Eolien-SOEC et Solaire-SOEC fonctionnant pendant un an montrent que, avec les stratégies de contrôle implémentées, le système SOEC stocke la puissance appliquée avec un rendement de 92% sur PCS en moyenne, alors que les unités fonctionnent dans des conditions tolérables mis à part une unité qui suit la courbe de charge et est susceptible d'avoir une durée de vie diminuée.

Page generated in 0.0481 seconds