• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 13
  • 4
  • Tagged with
  • 48
  • 48
  • 31
  • 26
  • 24
  • 21
  • 19
  • 19
  • 17
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Caractérisation structurale de la molécule HLA-DO

Raby, Nicola 02 1900 (has links)
Les molécules classiques du CMH de classe II présentent des peptides antigéniques aux lymphocytes T CD4+. Cette présentation est régulée par deux molécules non classiques : HLA-DM catalyse la relâche de CLIP et le chargement de peptides et HLA-DO module l’activité de DM. Une expression insuffisante en cellules d’insectes empêche les expériences de cristallisation de DO, probablement en raison de sa conformation, rendant DO instable et inapte à sortir du réticulum endoplasmique (RE). DM corrige la conformation de DO et permet sa sortie du RE. Aussi, par ses ponts disulfures uniques, DM adopte une conformation stable et peut sortir du RE sans lier d’autre molécule. Nous avons tenté de corriger la conformation de DO en introduisant des cystéines pour établir des ponts homologues à ceux de DM. La conformation de DO ne fut pas corrigée. Par ailleurs, nous avons augmenté l’expression de DO en introduisant une séquence partielle de Kozak. Nous avons aussi étudié l’effet de DM sur l’expression de DO. DM a favorisé l’expression de DO, probablement en diminuant sa dégradation. Chaque chaîne du dimère DMαβ est impliquée dans l’oxydation de sa chaîne partenaire. La conformation non-optimale de DO pourrait traduire une incapacité des chaînes α ou β à favoriser l’oxydation de sa partenaire; DM corrigerait ce problème. Notre analyse d’immunobuvardage de type Western a toutefois démontré que DM ne modifie pas l’état d’oxydation de DOα et DOβ. Finalement, nous avons étudié l’interaction DO-DM. L’acide aminé DOαE41 est impliqué dans cette liaison. Certains des acides aminés entre α80 et α84 pourraient être impliqués. Nous avons muté des acides aminés de cette région de DOα. Les résidus testés ne semblent pas impliqués dans la liaison DO-DM. L’obtention de la structure tridimensionnelle de DO et la caractérisation de son état oxydatif et de sa liaison à DM permettront de mieux comprendre son rôle. / Classical MHC class II molecules present antigenic peptides to CD4+ T cells. This presentation is regulated by two non-classical molecules: HLA-DM catalyzes CLIP release and peptide loading and HLA-DO mediates the DM activity. An insufficient expression in insect cells did not allow DO crystal production experiments, probably because of its conformation, rendering DO unstable and unable to leave the endoplasmic reticulum (ER). DM corrects the conformation of DO and allows its egress from the ER. Also, because of its unique disulfide bonds, DM has a stable conformation and can egress from the ER without binding another molecule. We tried to correct the conformation of DO by introducing cysteines to create disulfide bonds homologous to those of DM. However, its conformation was not corrected. Also, we increased DO expression by inserting a partial Kozak sequence. We also studied the effect of DM on DO expression. DM favoured DO expression, probably by reducing its degradation. Each chain of the DMαβ dimer plays a role in the oxidation of its partner chain. The non-optimal conformation of DO might result from an incapacity of its α and β chains to direct each other’s oxidation; DM would correct this problem. Our Western blot analysis showed, however, that DM does not modify the oxidation state of DOα and DOβ. Finally, we studied the DO-DM interaction. The DOαE41 amino acid is involved in this interaction, as some of the α80 to α84 might be. We mutated amino acids in this region of DO. Tested amino acids did not seem involved in DO-DM binding. The tridimensional structure of DO and the characterization of its oxidative state and its DM binding will allow a better understanding of its function.
32

MARCH1 : new insights in the activation of B cells

Galbas, Tristan 09 1900 (has links)
RÉSUMÉ L’implication des cellules B dans le développement de l’auto-immunité ne cesse d’être illustrée par de récentes publications. Les cellules présentent des peptides du soi aux cellules T auto-réactives ce qui mène à la production de cytokines pro-inflammatoires et d’anticorps auto-réactifs. Dans le présent document, nous explorons la présentation antigénique et la modification post-traductionnelle du complexe majeur d’histocompatibilité II (CMH-II). MARCH1 est une E3 ubiquitine ligase qui cible le CMH-II et le relocalise le complexe vers les endosomes de recyclage. Ainsi, MARCH1 est un inhibiteur de la présentation d’antigènes exogènes. Ici, nous démontrons que MARCH1 est exprimé seulement dans la sous-population des cellules B folliculaires et que cette expression est perdue lors de l’entrée dans les centres germinatifs. Nous proposons que MARCH1 établie une barrière de formation de centres germinatifs. Nous démontrons le lien entre MARCH1 et la hausse de CMH-II à la surface des cellules B à la suite d’un traitement à l’IL-10. De plus, nous avons testé plusieurs stimuli activateurs des cellules B et démontrons que MARCH1 est régulé à la baisse dans tous les cas. De plus, nous mettons en valeurs le rôle de la voie canonique d’activation de NF-κB dans cette régulation de MARCH1. Finalement, nous avons développé un système de lentivirus exprimant MARCH1 qui nous permet de forcer l’expression de MARCH1 dans des cellules réfractaires à la transfection. Nous discutons de l’implication de cette régulation du CMH-II par MARCH1 dans le développement de maladies auto-immunes. / ABSTRACT Increasing evidence suggests a major role for B cells in the onset of auto-immune diseases. B cells present self-antigens to auto-reactive T cells which leads to the production of pro-inflammatory cytokines and auto-immune antibodies. Here we look at the process of antigen presentation and at post-transcriptional modifications of the MHC-II molecule. MARCH1 is an E3 ubiquitin ligase which targets MHC-II and re-localises the complex into recycling endosomes. Thus, MARCH1 is a direct inhibitor of exogenous antigen presentation. Here we show that only follicular B cells express MARCH1 and that upon germinal center entry, these cells lose all traces of MARCH1. We propose that MARCH1 may establish a threshold for germinal center creation. Moreover we demonstrate that the well-established increase in surface MHC-II induced by IL-10 on murine B cells is a result of a decrease in MARCH1 expression. We tested different B cell activation stimuli and showed that upon activation, MARCH1 mRNA is decreased in a time-dependent manner. In addition, we demonstrate the implication of the canonical NF-κB pathway in this regulation. Finally, we developed a lentiviral vector system expressing MARCH1 which enables us to force the expression of our target protein in non-transfectable cell types. We discuss the implication of MARCH1 in the presentation of self-antigens to auto-reactive T cells and the generation of auto-immunity.
33

Effect of the unfolded protein response on MHC class I antigen presentation

Granados, Diana Paola January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
34

Rôle des transporteurs de peptides dans la présentation antigénique par les cellules dendritiques / Role of peptide transporters in antigen presentation by dendritic cells

Lawand, Myriam 31 October 2014 (has links)
Les cellules dendritiques (DCs) sont des cellules spécialisées dans la présentation de l'antigène aux lymphocytes (CPAs), capables d'initier des réponses immunitaires adaptatives et ce sont également les acteurs majeurs de la présentation croisée des antigènes exogènes par le complexe majeur d’histocompatibilité de classe I (CMH-I). Les mécanismes moléculaires et cellulaires de la présentation croisée ont beaucoup été étudiés, mais des questions importantes restent à élucider. Notre laboratoire a précédemment montré que la pré-incubation à basse température des DCs déficientes pour TAP (transporter associated with antigen processing) normalise l’expression de molécules du CMH-I à la surface et la présentation croisée des antigènes phagocytés par une voie dépendante du protéasome, suggérant que les phagosomes pourraient être dotés d’un transporteur alternatif pour importer les peptides générés dans le cytosol par le protéasome. Comme la source de CMH-I chargés par cette voie reste incertaine, il est possible que le rôle de TAP dans la présentation croisée des antigènes phagocytés soit indirect et limité à fournir les molécules de CMH-I disponibles pour un chargement pendant leur recyclage. Ainsi, notre objectif était de déterminer le rôle exact de TAP dans le transport de peptides à l'intérieur du phagosome et d'évaluer le rôle de TAP-L (TAP-like), un transporteur lysosomal ATP-dépendant avec une fonction putative dans la présentation antigénique. Nous avons mis au point une technique de transport des peptides par cytométrie en flux (phagoFACS) et montré que TAP est présent dans les phagosomes des DCs et est capable de transporter des peptides ayant une forte affinité pour TAP d'une manière ATP-dépendante. Cette technique permet l'exclusion des phagosomes ayant un défaut d’intégrité membranaire, obtenus lors de la préparation des phagosomes, et apporte une preuve directe de l'accumulation du peptide à l'intérieur des phagosomes. Les paramètres affectant cette accumulation sont la maturation phagosomale et la présence de molécules CMH-I liant le peptide. De façon surprenante, en l'absence de TAP, le peptide SIINFEKL dérivé de l’ovalbumine ayant une affinité intermédiaire pour TAP est transporté de manière ATP-dépendante dans le phagosome. Ceci est cohérent avec l’hypothèse suggérant la présence d'un autre transporteur de peptide dans les phagosomes des DCs. Nous avons utilisé la même technique pour évaluer la fonction physiologique de TAP-L dans le transport de peptides et montré que TAP-L est présent dans les phagosomes et serait responsable de l’import de peptides dans ces vésicules. Nos résultats suggèrent aussi que TAP-L semble jouer un rôle dans la présentation croisée des antigènes phagocytés à basse température. Ceci a été observé dans des DCs déficientes pour TAP et TAP-L, indiquant que les deux transporteurs pourraient coopérer pour assurer l’import des peptides dans les phagosomes. Nous avons également pu démontrer un rôle de TAP-L dans la présentation de l’antigène par CMH-II. Ces résultats nous encouragent à explorer les mécanismes sous-jacents à ces fonctions pour comprendre la contribution relative de chaque transporteur de peptides dans la présentation antigénique. / Dendritic cells (DCs) are potent antigen-presenting cells, capable of activating resting T cells and of initiating primary and stimulating memory immune responses. DCs can efficiently use internalized antigens for presentation by major histocompatibility class I (MHC-I) molecules: a phenomenon referred to as “cross-presentation.” Cross-presentation is important in priming of CD8+ T-cell responses to a variety of pathogens and to tumors as well as in immune tolerance to self and in autoimmunity. The molecular and cell biological mechanisms underlying cross-presentation have been studied intensively but important issues remain unclear. Our laboratory has previously shown that the pre-incubation of TAP-deficient DCs at low temperature normalized surface MHC-I expression and cross-presentation of phagocytosed antigens in a proteasome-dependent pathway. This suggested that phagosomes might harbor an alternative peptide transporter to import peptides generated by cytosolic proteasome complexes. As the source of MHC-I loaded in this pathway remains unclear, it is possible that the principal or partial role of TAP in proteasome-dependent cross-presentation of phagocytosed antigens is to provide recycling cell surface class I molecules. Our aim was to assess the exact role of TAP in peptide transport into phagosomes and to examine the role of the transporter associated with antigen processing-like (TAP-L), a lysosomal transporter with a putative function in antigen presentation. We have developed an assay of peptide transport using flow cytometry (phagoFACS) and shown that TAP is present in DC phagosomes and capable of transporting at least peptides with high affinity to TAP in an ATP-dependant manner. Using this assay, which allowed for eliminating background due to leaky vesicles, we were able to provide direct evidence of peptide accumulation inside phagosomes. ATP-dependant peptide accumulation inside phagosomes was affected by phagosomal maturation and by the presence of a peptide-binding MHC class I-molecule. Surprisingly, in the absence of TAP, another peptide transporter may be able to transport a peptide with intermediate affinity to TAP, namely the ovalbumin peptide SIINFEKL, in an ATP-dependant manner. We used the same technique to assess the function of TAP-L in peptide transport and found that TAP-L may be involved in peptide import into phagosomes. Additional results suggest that TAP-L plays a role in MHC-II presentation and cross-presentation of phagocytosed antigens at low temperature. The latter was shown in DCs lacking both transporters, suggesting that TAP and TAP-L might cooperate to ensure peptide import into phagosomes. The mechanisms underlying these functions should be explored to understand the relative contribution of each peptide transporter to antigen presentation.
35

Biologie cellulaire des endosomes IRAP+ dans les cellules dendritiques / Cell biology of IRAP+ endosomes in dendritic cells

Babdor, Joël 20 October 2014 (has links)
Par leur activité permanente à l’état basal et en situation infectieuse, les cellules dendritiques (DC) de l’organisme orchestrent la tolérance du soi et l’élimination du non-soi, en façonnant les réponses immunes. Ce rôle immunologique complexe des DC repose en grande partie sur des mécanismes de biologie cellulaire spécifiques, qui font l’objet d’un effort considérable de caractérisation. Le travail réalisé au cours de cette thèse met en lumière une sous-population endosomale jouant un rôle clé dans les processus cellulaires de modulation de l’immunité par les DC : les endosomes IRAP+ (insulin responsive aminopeptidase). Etudiée dans différents contextes biologiques depuis 1930, IRAP s’est récemment révélée être impliquée dans l’apprêtement endo-phagosomal des antigènes exogènes par les DC, en vue de leur présentation croisée aux lymphocytes T (Saveanu et al., 2009; Weimershaus et al., 2012). Cette découverte a attiré notre attention sur les endosomes IRAP+/RAB14+ peu étudiés dans les DC. Ce travail étudie la place des endosomes IRAP dans la biologie cellulaire des DC ainsi que le rôle de ces endosomes dans les fonctions biologiques des DC. Nous avons étudié l’influence des endosomes IRAP sur les autres compartiments cellulaires et démontré leur implication dans un système endolysosomal de régulation de la réponse inflammatoire aux pathogènes. Nous avons également étudié l’impact de IRAP sur les processus de maturation des phagosomes et montré leur influence sur les processus subséquent d’élimination des pathogènes et de présentation croisée. Les endosomes IRAP+ sont donc mis en jeu dans la modulation de la maturation phagosomale et de l’inflammation, mais également dans l’optimisation de la présentation des antigènes aux lymphocytes T ; trois processus qui reposent sur une régulation fine de la compartimentation intracellulaire. L’ensemble des résultats de cette thèse définit les endosomes IRAP+ comme un des acteurs majeurs de la « régulation compartimentée » des processus cellulaires des DC, au cœur de la machinerie qui régit les équilibres de l’immunité. / Dendritic cells (DC) are central in immune system. They are permanently active in the organism at steady state and during infection, where they orchestrate tolerance against self and immunity against non-self, such a complex immunological role relies on specific cell biology mechanisms. These mechanisms are currently extensively studied. This work sheds light on a new endosomal compartment playing a crucial role in immunity modulation: IRAP (insulin responsive aminopeptidase)-containing endosomes. Studied in various contexts since 1930, IRAP was recently revealed to be required for exogenous antigen processing in endophagosomal compartment of DC and subsequent cell surface presentation to T lymphocytes (Saveanu et al., 2009; Weimershaus et al., 2012). This discovery prompted us to study IRAP+ endosomes that are poorly described in DC. This work studies IRAP-containing endosomes in DC compartments and questions their specific contribution in DC biological functions. We therefore investigated IRAP-containing endosomes relationship to other cellular compartments and demonstrated their requirement in an endolysosomal regulation system controlling pathogen related inflammation. We also studied the implication of IRAP-containing endosomes on phagosomes maturation and showed their influence on pathogen killing and cross presentation. IRAP-containing endosomes are required for several cellular functions that all rely on cellular compartmentalization. This work proposes IRAP-containing endosomes as a major actor of a “compartmental regulation” of DC functions, participating to fine tuning of immune balance.
36

La maladie de Parkinson est-elle une maladie auto-immune ? À la recherche des acteurs moléculaires de la MitAP

Guérin, Mélanie 08 1900 (has links)
Le dysfonctionnement mitochondrial est associé à de nombreuses maladies neurodégénératives. En effet, plusieurs protéines impliquées dans ces maladies, telles que les protéines PINK1 et Parkin dans la maladie de Parkinson, interviennent dans le recrutement de protéines nécessaires à l’homéostasie mitochondriale. En absence de ces protéines, un nouveau mécanisme se met en place : la formation de vésicules dérivées des mitochondries (MDVs). Notre équipe a démontré que ce mécanisme est responsable de la présentation antigénique mitochondriale (MitAP) et que les protéines PINK1 et Parkin ont un rôle répresseur sur cette voie et que cette nouvelle voie de présentation était capable d’activer des lymphocytes T CD8+ in vivo. Ces découvertes font entrer le système immunitaire comme nouvel acteur des maladies neurodégénératives. Cependant, les protéines impliquées dans MitAP restent à être identifiées. Deux projets ont été initiés afin de pouvoir mieux caractériser MitAP. La première a consisté à mettre au point un protocole d’isolation mitochondrial afin d’identifier de nouveaux partenaires moléculaires à la formation des MDVs au niveau des mitochondries. Le deuxième projet initie l’étude de l’immunopeptidome de cellules présentatrices d’antigène afin d’identifier les peptides mitochondriaux présentés à la surface des cellules. L’identification de protéines par l’isolation des mitochondries et celles générant les peptides mitochondriaux présentés à la surface des cellules sont essentielles pour comprendre le mécanisme des MDVs et le fonctionnement de la MitAP impliquée dans la maladie de Parkinson. Les protéines partenaires de cette voie moléculaire pourraient avoir un rôle dans les maladies neurodégénératives et être des cibles thérapeutiques ou des biomarqueurs. / Mitochondrial dysfunction is associated with many neurodegenerative diseases. Indeed, several proteins involved in these diseases, such as PINK1 and Parkin proteins in Parkinson's disease, are involved in the protein recruitment required for mitochondrial homoeostasis. In the absence of these proteins, a new mechanism is set up: the formation of vesicles derived from mitochondria (MDVs). Our team has demonstrated that this mechanism is responsible for the mitochondrial antigen presentation (MitAP) and that the PINK1 and Parkin proteins play a repressor role on this pathway and that this new presentation pathway is capable of activating CD8 + T cells in vivo. These discoveries bring the immune system as a new player in neurodegenerative diseases. However, the proteins involved in MitAP remain to be identified. Two projects have been initiated to better characterize MitAP. The first was to develop a mitochondrial isolation protocol to identify new molecular partners for MDV formation at the mitochondrial level. The second project initiates the study of the immunopeptidoma of antigen presenting cells to identify the mitochondrial peptides presented on the cell surface. The identification of these proteins is essential to understand the mechanism of MDVs and the functioning of MitAP involved in Parkinson's disease. The protein partners of this molecular pathway may have a role in neurodegenerative diseases and may be therapeutic targets or biomarkers.
37

UM171-induced ROS promote antigen cross-presentation of immunogenic peptides by bone marrow-derived mesenchymal stromal cells

Salame, Natasha 07 1900 (has links)
En raison de leur multipotence considérable, les cellules stromales mésenchymateuses (CSM) ont été énormément utilisées en clinique dans le contexte de la médecine régénérative. Pourtant, la stimulation des CSM avec de faibles concentrations d'interféron-gamma (IFN-gamma) déclenche une augmentation du complexe majeur d’histocompatibilité de classe I et II, et surtout une capacité de novo de présentation croisée des antigènes. Ainsi, malgré leurs propriétés immunosuppressives naturelles, les CSM peuvent être modulées pour devenir pro-inflammatoires. Comme le dérivé pyrimidoindole UM171 induit l’augmentation de l’expression de plusieurs gènes impliqués dans la présentation antigénique dans les cellules souches hématopoïétiques humaines, nous avons étudié son potentiel pour le déclenchement de la présentation antigénique par les CSM. L'analyse par cytométrie en flux a montré une élévation des niveaux de H2-kB après le traitement avec le médicament, en corrélation avec une augmentation de la présentation de l'antigène, démontrée par une activation plus importante de la lignée de cellules T B3Z spécifique au peptide SIINFEKL. Cette présentation croisée de novo d'un peptide immunogène ne résulte pas d'une augmentation de l'absorption ou de la digestion enzymatiques des protéines, mais plutôt de l'expression du gène Psmb8 induit par le médicament. Comme le traitement avec plusieurs antioxydants et inhibiteurs des complexes de la chaîne de transport des électrons a réduit de manière significative les effets observés, nous concluons que la présentation croisée médiée par UM171 est dépendante des ROS. Dans le contexte de la vaccination thérapeutique, l'immunisation avec des CSM traitées par UM171 chez des souris présentant des tumeurs EG.7 préétablies a permis d'obtenir un taux de survie de 40%. Dans l'ensemble, notre étude révèle une nouvelle approche pharmacologique pour modifier les CSM afin qu'elles deviennent des cellules présentatrices d'antigènes, ce qui permet de développer de nouveaux vaccins anticancéreux innovants et puissants. / Due to their considerable multipotency, mesenchymal stromal cells (MSCs) have been tremendously employed in the clinic for regenerative medicine. Yet, stimulation of MSCs with low concentrations of interferon-gamma (IFN-gamma) triggers an increase in the major histocompatibility complex I and II, and most importantly, a de novo antigen cross-presentation capacity. Thus, despite their natural immunosuppressive properties, MSCs can be modulated to become pro-inflammatory. As the pyrimidoindole derivative UM171 induces the upregulation of several antigen presentation-involved genes in human hematopoietic stem cells, we investigated its potential for inducing antigen presentation by MSCs. Flow cytometry analysis showed an upregulation in H2-kB levels after treatment with the drug, correlating with an increase in antigen presentation indicated by higher activation of the SIINFEKL-specific B3Z T cell line. This de novo cross-presentation of an immunogenic peptide did not result from an increase in protein uptake or processing, but rather stemmed from the drug-induced expression of the Psmb8 gene. As treatment with multiple antioxidants and inhibitors of the electron transport chain complexes significantly reduced the observed effects, we conclude that UM171-mediated cross-presentation is ROS-dependent. In the context of therapeutic vaccination, immunization with UM171-treated MSCs in mice with pre-established EG.7 tumors resulted in 40% survival. Overall, our study reveals a new pharmacological approach in modifying MSCs to become antigen presenting cells, hence allowing the development of future innovative and potent anti-tumoral vaccines.
38

Molecular characterization of the contribution of autophagy to antigen presentation using quantitative proteomics

Bell, Christina 07 1900 (has links)
L’autophagie est une voie hautement conservée de dégradation lysosomale des constituants cellulaires qui est essentiel à l’homéostasie cellulaire et contribue à l’apprêtement et à la présentation des antigènes. Les rôles relativement récents de l'autophagie dans l'immunité innée et acquise sous-tendent de nouveaux paradigmes immunologiques pouvant faciliter le développement de nouvelles thérapies où la dérégulation de l’autophagie est associée à des maladies auto-immunes. Cependant, l'étude in vivo de la réponse autophagique est difficile en raison du nombre limité de méthodes d'analyse pouvant fournir une définition dynamique des protéines clés impliquées dans cette voie. En conséquence, nous avons développé un programme de recherche en protéomique intégrée afin d’identifier et de quantifier les proteines associées à l'autophagie et de déterminer les mécanismes moléculaires régissant les fonctions de l’autophagosome dans la présentation antigénique en utilisant une approche de biologie des systèmes. Pour étudier comment l'autophagie et la présentation antigénique sont activement régulés dans les macrophages, nous avons d'abord procédé à une étude protéomique à grande échelle sous différentes conditions connues pour stimuler l'autophagie, tels l’activation par les cytokines et l’infection virale. La cytokine tumor necrosis factor-alpha (TNF-alpha) est l'une des principales cytokines pro-inflammatoires qui intervient dans les réactions locales et systémiques afin de développer une réponse immune adaptative. La protéomique quantitative d'extraits membranaires de macrophages contrôles et stimulés avec le TNF-alpha a révélé que l'activation des macrophages a entrainé la dégradation de protéines mitochondriales et des changements d’abondance de plusieurs protéines impliquées dans le trafic vésiculaire et la réponse immunitaire. Nous avons constaté que la dégradation des protéines mitochondriales était sous le contrôle de la voie ATG5, et était spécifique au TNF-alpha. En outre, l’utilisation d’un nouveau système de présentation antigènique, nous a permi de constater que l'induction de la mitophagie par le TNF-alpha a entrainée l’apprêtement et la présentation d’antigènes mitochondriaux par des molécules du CMH de classe I, contribuant ainsi la variation du répertoire immunopeptidomique à la surface cellulaire. Ces résultats mettent en évidence un rôle insoupçonné du TNF-alpha dans la mitophagie et permet une meilleure compréhension des mécanismes responsables de la présentation d’auto-antigènes par les molécules du CMH de classe I. Une interaction complexe existe également entre infection virale et l'autophagie. Récemment, notre laboratoire a fourni une première preuve suggérant que la macroautophagie peut contribuer à la présentation de protéines virales par les molécules du CMH de classe I lors de l’infection virale par l'herpès simplex virus de type 1 (HSV-1). Le virus HSV1 fait parti des virus humains les plus complexes et les plus répandues. Bien que la composition des particules virales a été étudiée précédemment, on connaît moins bien l'expression de l'ensemble du protéome viral lors de l’infection des cellules hôtes. Afin de caractériser les changements dynamiques de l’expression des protéines virales lors de l’infection, nous avons analysé par LC-MS/MS le protéome du HSV1 dans les macrophages infectés. Ces analyses nous ont permis d’identifier un total de 67 protéines virales structurales et non structurales (82% du protéome HSV1) en utilisant le spectromètre de masse LTQ-Orbitrap. Nous avons également identifié 90 nouveaux sites de phosphorylation et de dix nouveaux sites d’ubiquitylation sur différentes protéines virales. Suite à l’ubiquitylation, les protéines virales peuvent se localiser au noyau ou participer à des événements de fusion avec la membrane nucléaire, suggérant ainsi que cette modification pourrait influer le trafic vésiculaire des protéines virales. Le traitement avec des inhibiteurs de la réplication de l'ADN induit des changements sur l'abondance et la modification des protéines virales, mettant en évidence l'interdépendance des protéines virales au cours du cycle de vie du virus. Compte tenu de l'importance de la dynamique d'expression, de l’ubiquitylation et la phosphorylation sur la fonction des proteines virales, ces résultats ouvriront la voie vers de nouvelles études sur la biologie des virus de l'herpès. Fait intéressant, l'infection HSV1 dans les macrophages déclenche une nouvelle forme d'autophagie qui diffère remarquablement de la macroautophagie. Ce processus, appelé autophagie associée à l’enveloppe nucléaire (nuclear envelope derived autophagy, NEDA), conduit à la formation de vésicules membranaires contenant 4 couches lipidiques provenant de l'enveloppe nucléaire où on retrouve une grande proportion de certaines protéines virales, telle la glycoprotéine B. Les mécanismes régissant NEDA et leur importance lors de l’infection virale sont encore méconnus. En utilisant un essai de présentation antigénique, nous avons pu montrer que la voie NEDA est indépendante d’ATG5 et participe à l’apprêtement et la présentation d’antigènes viraux par le CMH de classe I. Pour comprendre l'implication de NEDA dans la présentation des antigènes, il est essentiel de caractériser le protéome des autophagosomes isolés à partir de macrophages infectés par HSV1. Aussi, nous avons développé une nouvelle approche de fractionnement basé sur l’isolation de lysosomes chargés de billes de latex, nous permettant ainsi d’obtenir des extraits cellulaires enrichis en autophagosomes. Le transfert des antigènes HSV1 dans les autophagosomes a été determine par protéomique quantitative. Les protéines provenant de l’enveloppe nucléaire ont été préférentiellement transférées dans les autophagosome lors de l'infection des macrophages par le HSV1. Les analyses protéomiques d’autophagosomes impliquant NEDA ou la macroautophagie ont permis de decouvrir des mécanismes jouant un rôle clé dans l’immunodominance de la glycoprotéine B lors de l'infection HSV1. Ces analyses ont également révélées que diverses voies autophagiques peuvent être induites pour favoriser la capture sélective de protéines virales, façonnant de façon dynamique la nature de la réponse immunitaire lors d'une infection. En conclusion, l'application des méthodes de protéomique quantitative a joué un rôle clé dans l'identification et la quantification des protéines ayant des rôles importants dans la régulation de l'autophagie chez les macrophages, et nous a permis d'identifier les changements qui se produisent lors de la formation des autophagosomes lors de maladies inflammatoires ou d’infection virale. En outre, notre approche de biologie des systèmes, qui combine la protéomique quantitative basée sur la spectrométrie de masse avec des essais fonctionnels tels la présentation antigénique, nous a permis d’acquérir de nouvelles connaissances sur les mécanismes moléculaires régissant les fonctions de l'autophagie lors de la présentation antigénique. Une meilleure compréhension de ces mécanismes permettra de réduire les effets nuisibles de l'immunodominance suite à l'infection virale ou lors du développement du cancer en mettant en place une réponse immunitaire appropriée. / Autophagy is a highly conserved lysosomal-mediated protein degradation pathway that plays a crucial role in maintaining cellular homeostasis and contributes to antigen processing and presentation. The emerging roles of autophagy in both innate and adaptive immunity underpin novel immunological paradigms that may provide opportunities for the development of new therapies where impaired autophagy is associated with autoimmune diseases. However, the in vivo study of autophagic response is challenging in view of the limited number of analytical approaches that can provide a dynamic definition of the key proteins involved in this pathway. Accordingly, we developed an integrated proteomics research program to unravel the molecular machines associated with autophagy and to decipher the fine details of the molecular mechanisms governing the functions of the autophagosome in antigen presentation using a systems biology approach. To study how autophagy and antigen presentation are actively modulated in macrophages, we first conducted comprehensive, global proteomics studies under different conditions known to stimulate autophagy. Autophagy is modulated by cytokines as well as by viral infection in various ways. TNF-alpha is one of the major proinflammatory cytokines that mediate local and systemic responses and direct the development of adaptive immunity. Label-free quantitative proteomics analysis of membrane extracts from TNF-alpha activated and resting macrophages revealed that TNF-alpha activation led to the downregulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the downregulation of mitochondria proteins occurred through Atg5-dependent mitophagy, and was specific to TNF-alpha. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-alpha enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules, suggesting that TNF-alpha induced mitophagy contributes to the modification of the MHC class I peptide repertoire. These findings highlight an unsuspected role of TNF-alpha in mitophagy and expanded our understanding of the mechanisms responsible for MHC class I presentation of self-antigens. A complex interplay also exists between viral infection and autophagy. Recently, our lab provided the first evidence that macroautophagy can contribute to the presentation of viral proteins on MHC class I molecules during Herpes Simplex Virus type 1 (HSV1) infection. HSV1 are among the most complex and widespread human viruses. While the composition of viral particles has been studied, less is known about the expression of the whole viral proteome in infected cells. To comprehensively characterize the system, we analyzed the proteome of the prototypical HSV1 in infected macrophages by LC-MS/MS. We achieved a very high level of protein coverage and identified a total of 67 structural and non-structural viral proteins (82% of the HSV1 proteome) using LC-MS/MS on a LTQ-Orbitrap instrument. We also obtained a comprehensive map of 90 novel phosphorylation sites and ten novel ubiquitylation sites on different viral proteins. Interestingly all ubiquitylated proteins could either localize to the nucleus or participate in membrane fusion events, suggesting that ubiquitylation of viral proteins might affect their trafficking. Treatment with inhibitors of DNA replication induced changes of both viral protein abundance and modifications, highlighting the interdependence of viral proteins during the life cycle of the virus. Given the importance of expression dynamics, ubiquitylation and phosphorylation for protein function, these findings will serve as important tools for future studies on herpes virus biology. Interestingly, HSV1 infection in macrophages triggers a novel form of autophagy which remarkably differs in many ways from macroautophagy. This process, referred to as nuclear envelope-derived autophagy (NEDA), leads to the formation of 4-membrane layered vesicles originating from the nuclear envelope where some viral protein such as glycoprotein B are highly enriched. To which extent this process differs from macroautophagy and participates in the pathogenesis of HSV infection is still largely unknown. Using a novel antigen presentation assay we could show that NEDA is an Atg5-independent pathway that participates in the capture of viral proteins, and their processing and presentation on MHC class I molecules. To understand the involvement of NEDA in antigen presentation it is crucial to characterize the autophagosomal proteome in HSV1 infected macrophages. We developed a novel isolation method based on the loading of the lysosomal compartment with latex beads, a unique tool to obtain very pure cell extracts, upon autophagy induction. The transfer of HSV1 antigens into autophagosomes was monitored using quantitative proteomics. Nuclear enveloped-derived proteins were preferentially transferred to the autophagosome during HSV1 infection. Detailed proteomics characterization of autophagosomes formed during NEDA and macroautophagy led to the discovery of mechanisms that play a key role in glycoprotein B immunodominance during HSV1 infection. These analyses also revealed that various autophagic pathways can be induced to promote the capture of selective sets of viral proteins, thus actively shaping the nature of the immune response during infection. In conclusion, the application of quantitative proteomics methods played a key role in identifying and quantifying important regulators of autophagy in macrophages and allowed us to identify changes occurring during the remodeling of autophagosomes in response to disease and inflammatory conditions such as viral infections. Furthermore, our systems biology approach that combined mass spectrometry-based quantitative proteomics with functional screens such as antigen presentation assays revealed novel biological insights on the molecular mechanisms governing the functions of autophagy in antigen presentation. Harnessing the contribution of autophagy in antigen presentation has the potential to minimize the deleterious effects of immunodominance in viral infection and cancer by shaping an appropriate immune response.
39

Étude des voies d’apprêtement des antigènes viraux menant à la présentation antigénique par les CMH de classe I

English, Luc 06 1900 (has links)
Le contrôle immunitaire des infections virales est effectué, en grande partie, par les lymphocytes T CD8+ cytotoxiques. Pour y parvenir, les lymphocytes T CD8+ doivent être en mesure de reconnaître les cellules infectées et de les éliminer. Cette reconnaissance des cellules infectées s’effectue par l’interaction du récepteur T (TCR) des lymphocytes T CD8+ et des peptides viraux associés au complexe majeur d’histocompatibilité (CMH) de classe I à la surface des cellules hôtes. Cette interaction constitue l’élément déclencheur permettant l’élimination de la cellule infectée. On comprend donc toute l’importance des mécanismes cellulaires menant à la génération des peptides antigéniques à partir des protéines virales produites au cours d’une infection. La vision traditionnelle de cet apprêtement protéique menant à la présentation d’antigènes par les molécules du CMH propose deux voies cataboliques distinctes. En effet, il est largement admis que les antigènes endogènes sont apprêtés par la voie dite ‘‘classique’’ de présentation antigénique par les CMH de classe I. Cette voie implique la dégradation des antigènes intracellulaires par le protéasome dans le cytoplasme, le transport des peptides résultant de cette dégradation à l’intérieur du réticulum endoplasmique, leur chargement sur les molécules du CMH de classe I et finalement le transport des complexes peptide-CMH à la surface de la cellule où ils pourront activer les lymphocytes T CD8+. Dans la seconde voie impliquant des antigènes exogènes, le dogme veut que ceux-ci soient apprêtés par les protéases du compartiment endovacuolaire. Les peptides ainsi générés sont directement chargés sur les molécules de CMH de classe II à l’intérieur de ce compartiment. Par la suite, des mécanismes de recyclage vésiculaire assurent le transport des complexes peptide-CMH de classe II à la surface de la cellule afin de stimuler les lymphocytes T CD4+. Cependant, cette stricte ségrégation des voies d’apprêtement antigénique a été durement éprouvée par la capacité des cellules présentatrices d’antigènes à effectuer l’apprêtement d’antigènes exogènes et permettre leur présentation sur des molécules de CMH de classe I. De plus, l’identification récente de peptides d’origine intracellulaire associés à des molécules de CMH de classe II a clairement indiqué la présence d’interactions entre les deux voies d’apprêtement antigénique permettant de transgresser le dogme préalablement établi. L’objectif du travail présenté ici était de caractériser les voies d’apprêtement antigénique menant à la présentation d’antigènes viraux par les molécules du CMH de classe I lors d’une infection par le virus de l’Herpès simplex de type I (HSV-1). Dans les résultats rapportés ici, nous décrivons une nouvelle voie d’apprêtement antigénique résultant de la formation d’autophagosomes dans les cellules infectées. Cette nouvelle voie permet le transfert d’antigènes viraux vers un compartiment vacuolaire dégradatif dans la phase tardive de l’infection par le virus HSV-1. Cette mise en branle d’une seconde voie d’apprêtement antigénique permet d’augmenter le niveau de présentation de la glycoprotéine B (gB) virale utilisée comme modèle dans cette étude. De plus, nos résultats décrivent la formation d’une nouvelle forme d’autophagosomes dérivés de l’enveloppe nucléaire en réponse à l’infection par le virus HSV-1. Ces nouveaux autophagosomes permettent le transfert d’antigènes viraux vers un compartiment vacuolaire lytique, action également assurée par les autophagosomes dits classiques. Dans la deuxième partie du travail présenté ici, nous utilisons l’infection par le virus HSV-1 et la production de la gB qui en résulte pour étudier le trafic membranaire permettant le transfert de la gB vers un compartiment vacuolaire dégradatif. Nos résultats mettent en valeur l’importance du réticulum endoplasmique, et des compartiments autophagiques qui en dérivent, dans ces mécanismes de transfert antigénique permettant d’amplifier la présentation antigénique de la protéine virale gB sur des CMH de classe I via une voie vacuolaire. L’ensemble de nos résultats démontrent également une étroite collaboration entre la voie classique de présentation antigénique par les CMH de classe I et la voie vacuolaire soulignant, encore une fois, la présence d’interaction entre les deux voies. / Immune control of viral infections is mainly carried out by cytotoxic CD8+ T lymphocytes. To achieve this, CD8+ T lymphocytes must be able to recognize infected cells and eliminate them. This recognition of infected cells occurs by the interaction of the T cell receptor (TCR) of CD8+ T lymphocytes and viral peptides associated with major histocompatibility complex (MHC) class I on the surface of host cells. This interaction is the key element triggering the elimination of infected cells. This emphasizes the major role of cellular mechanisms leading to the generation of antigenic peptides from viral proteins. The traditional view of antigen presentation by MHC molecules proposes two segregated pathways. Indeed, it is widely accepted that endogenous antigens are processed by the ''classical'' MHC class I presentation pathway. This pathway involves the degradation of intracellular antigens by the proteasome complex in the cytoplasm of the cell, the resulting peptides are then translocated in the endoplasmic reticulum where they are loaded on MHC class I molecules, and finally peptide-MHC complex are exported at the cell surface to activate CD8+ T lymphocytes. In contrast, exogenous antigens internalized by endocytosis or phagocytosis are processed by hydrolases in the lytic endovacuolar compartment and the resulting peptides are loaded on MHC class II molecules. Thereafter, vesicle recycling mechanisms transport the peptide-MHC class II complex on the cell surface where they can stimulate CD4+ T lymphocytes. However, the strict segregation of these two pathways has been revisited to account for the ability of antigen presenting cells to present exogenous antigens on MHC class I molecules by a process called cross-presentation. Moreover, the recent finding that intracellular peptides might also be presented by MHC class II molecules clearly emphasized the presence of interactions between these two antigen processing pathways that transgress the previously established dogma. The objective of the work presented here was to characterize the antigen processing pathways leading to antigen MHC class I presentation during herpes simplex type I (HSV-1) infection. In the results reported here, we describe a new antigen processing pathway resulting from the formation of autophagosomes in HSV-1 infected cells. This new pathway allows the transfer of viral antigens in a lytic vacuolar compartment during the late phase of infection. The development and activation of this second pathway of antigen processing leads to an increased MHC class I presentation of the viral glycoprotein B (gB) used as a model in this study. Moreover, our results describe the establishment of a new form of autophagosomes derived from the nuclear envelope in response to HSV-1 infection. This new form of autophagosomes also contributes to viral antigen transfer to lytic vacuolar compartment in parallel to the action of classical autophagy. Our results also show a close collaboration between the classical MHC class I presentation pathway and vacuolar pathway induced by the formation of autophagosomes, still reinforcing the idea that these two pathways interact together to ensure optimal antigens processing during viral infection. In the second part of the work presented here, we use HSV-1 infection and the resulting viral glycoprotein B to study membrane trafficking allowing the transfer of gB to degradative vacuolar compartments. Our results highlight the role of the endoplasmic reticulum in antigen transfer mechanisms that induce an amplified MHC class I presentation of the viral glycoprotein B.
40

L’immunoprotéasome : producteur de peptides-CMH I et régulateur de l’expression génique

de Verteuil, Danielle Angeline 01 1900 (has links)
Le système ubiquitine-protéasome est le principal mécanisme par lequel les protéines intracellulaires sont dégradées. Le protéasome dit constitutif (PC) est donc essentiel à l’homéostasie mais aussi à la régulation de la majorité des processus cellulaires importants. La découverte d’un deuxième type de protéasome, appelé immunoprotéasome (IP), soulève toutefois de nouvelles questions. Pourquoi existe-t-il plus d’un type de protéasome ? L’IP a-t-il des rôles redondants ou complémentaires avec le PC ? L’IP étant présent principalement dans les cellules immunitaires ou stimulées par des cytokines, plusieurs groupes ont tenté de définir son rôle dans la réponse immunitaire. Or, l’implication de son homologue constitutif dans un éventail de processus non spécifiquement immunitaires nous laisse croire que l’IP pourrait lui aussi avoir un impact beaucoup plus large. L’objectif de cette thèse était donc de caractériser certains rôles cellulaires de l’IP dans les cellules dendritiques. Nous avons d’abord étudié l’impact global de l’IP sur la présentation antigénique de classe I. Ce faisant, nous avons pu déterminer ses deux contributions principales, soit l’augmentation drastique du nombre et de la diversité des peptides présentés sur les complexes majeurs d’histocompatibilité de classe I. Les différences de clivage entre le PC et l’IP pourraient expliquer en partie cette diversité du répertoire peptidique, notamment par l’affinité apparente de l’IP pour les régions protéiques non structurées. Dans un deuxième temps, nous avons dévoilé un nouveau rôle de l’IP sur un processus dépassant le cadre immunitaire : la transcription. Nous avons découvert que l’IP modifie l’abondance des ARNm en agissant principalement au niveau de leur synthèse. L’impact de l’IP sur le transcriptome est majeur et serait dû en partie à une dégradation différente de facteurs de transcription des familles IRF, STAT et NF-kB. Les cellules dendritiques IP-déficientes activent moins efficacement les lymphocytes T CD8+ et nous croyons que cette défaillance est causée (du moins en partie) par la perturbation transcriptomique provoquée par l’absence d’IP. Il importe donc de comprendre les différents rôles moléculaires de l’IP afin de mieux définir sa contribution globale au fonctionnement de la cellule et comprendre l’avantage évolutif, au niveau de l’organisme, procuré par une telle plasticité du système ubiquitine-protéasome. / The ubiquitin-proteasome system is the major mechanism by which intracellular proteins get degraded. Constitutive proteasomes (CPs) are thus essential for cellular homeostasis but also to regulate the majority of important cellular processes. However, the discovery of a second type of proteasome, named immunoproteasome (IP), raises new questions. Why are there more than one type of proteasome? Does the IP perform redundant or complementary roles with the CP? The IP is predominantly expressed in immune or cytokine-stimulated cells and several groups worked at defining its role during the immune response. Yet, the implication of its constitutive homolog in a variety of processes suggests that the IP may also have a much broader impact. The objective was to characterize cellular roles of the IP in dendritic cells. We first studied the global impact of the IP on class I antigen presentation. We discovered that the IP drastically increases the number and the diversity of peptide presented by class I major histocompatibility complexes. Cleavage differences between the CP and the IP are likely part of the explanation for this peptide repertoire diversity, notably due to IP’s apparent affinity for unstructured protein regions. Second, we discovered a new role for the IP in a process unrestricted to the immune system: transcription. We found that the IP affects transcript abundance mostly at the level of mRNA synthesis. The impact of IPs on the transcriptome is major and would be partly based on a different degradation of IRF, STAT and NF-kB transcription factor family members by the two types of proteasomes. IP-deficient dendritic cells are less potent activators of CD8+ T cells and we believe that this defect is at least partly caused by the transcriptome alterations induced by the absence of IPs. It is therefore important to understand the different molecular roles of the IP in order to better define its global contribution to cellular functions and to understand the evolutionary advantage, at the level of the organism, brought by such plasticity of the ubiquitin- proteasome system.

Page generated in 0.5527 seconds