• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 12
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 56
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influência do recozimento na recuperação e recristalização de tiras de aço baixo carbono dobradas por deformação a frio

Martinelli, Ilen Maris January 2010 (has links)
O presente trabalho tem como objetivo mostrar a influência do recozimento na recuperação e recristalização de tiras de aço baixo carbono dobradas por deformação a frio. Muitas indústrias que produzem peças a partir de dobramento a frio, buscam constantemente garantir a qualidade de seus produtos. Isto se torna um desafio a partir do momento que se considera a diversidade do formato das dobras exigidas. Através de observações práticas, o que se vê é que, com o objetivo de facilitar o processo, muitos profissionais são induzidos a acreditar que simplesmente aquecendo o material, o trabalho será facilitado e garantirá a qualidade do produto final. Assim, independente do tipo do aço e/ou nível de encruamento, os parâmetros de temperatura utilizados são determinados, na sua grande maioria, de forma empírica, sem critérios estabelecidos, ou seja, em muitos casos, os valores de temperatura tendem a ser os mesmos. Como a grande maioria de peças produzidas na indústria submetida a deformação é em aço baixo carbono, este foi escolhido como material para a fabricação das amostras utilizadas no experimento. Estas amostras foram submetidas a diversos graus de dobramento a frio e aplicação de recozimento para recristalização com variação controlada dos parâmetros. Através da intercomparação das amostras e com aplicação de diversos ensaios foram caracterizados a dureza, estrutura metalográfica, tamanho médio do precipitado, bem como a correlação entre as condições de recozimento versus o nível de recuperação do encruamento. Através dos dados obtidos, observou-se a importância de definir de forma científica os parâmetros de aquecimento para a recristalização, sob pena de prejudicar as características das peças. / This work aims to show the influence of annealing on the recovery and recrystallization of low carbon steel strips bent by cold forming. Many industries that produce parts from cold bending, constantly seek to ensure the quality of their products. This becomes a challenge from the moment that one considers the diversity of the shape of folds required. Through practical observation, we can see that, in order to facilitate the process, many professionals are led to believe that simply heating the material, the work will be facilitated and ensure final product quality. Thus, regardless of the type of steel and / or level of work hardening, the parameters used in temperature are determined, mostly, empirically, without established criteria, ie, in most cases, the temperature values tend to be same. As the vast majority of parts produced in the industry is subjected to deformation in steel low carbon, this was chosen as material for the manufacture of the samples used in the experiment. These samples were subjected to various degrees of cold bending and applying for recrystallization annealing with controlled variation of parameters. By intercomparison of samples and application of various tests were characterized hardness, metallographic structure, average size of the precipitate, and the correlation between the annealing conditions versus the level of recovery of work hardening. Through the data obtained it observed the importance of defining the parameters in a scientific way of heating for recrystallization, failing to affect the characteristics of components.
12

Influência do recozimento na recuperação e recristalização de tiras de aço baixo carbono dobradas por deformação a frio

Martinelli, Ilen Maris January 2010 (has links)
O presente trabalho tem como objetivo mostrar a influência do recozimento na recuperação e recristalização de tiras de aço baixo carbono dobradas por deformação a frio. Muitas indústrias que produzem peças a partir de dobramento a frio, buscam constantemente garantir a qualidade de seus produtos. Isto se torna um desafio a partir do momento que se considera a diversidade do formato das dobras exigidas. Através de observações práticas, o que se vê é que, com o objetivo de facilitar o processo, muitos profissionais são induzidos a acreditar que simplesmente aquecendo o material, o trabalho será facilitado e garantirá a qualidade do produto final. Assim, independente do tipo do aço e/ou nível de encruamento, os parâmetros de temperatura utilizados são determinados, na sua grande maioria, de forma empírica, sem critérios estabelecidos, ou seja, em muitos casos, os valores de temperatura tendem a ser os mesmos. Como a grande maioria de peças produzidas na indústria submetida a deformação é em aço baixo carbono, este foi escolhido como material para a fabricação das amostras utilizadas no experimento. Estas amostras foram submetidas a diversos graus de dobramento a frio e aplicação de recozimento para recristalização com variação controlada dos parâmetros. Através da intercomparação das amostras e com aplicação de diversos ensaios foram caracterizados a dureza, estrutura metalográfica, tamanho médio do precipitado, bem como a correlação entre as condições de recozimento versus o nível de recuperação do encruamento. Através dos dados obtidos, observou-se a importância de definir de forma científica os parâmetros de aquecimento para a recristalização, sob pena de prejudicar as características das peças. / This work aims to show the influence of annealing on the recovery and recrystallization of low carbon steel strips bent by cold forming. Many industries that produce parts from cold bending, constantly seek to ensure the quality of their products. This becomes a challenge from the moment that one considers the diversity of the shape of folds required. Through practical observation, we can see that, in order to facilitate the process, many professionals are led to believe that simply heating the material, the work will be facilitated and ensure final product quality. Thus, regardless of the type of steel and / or level of work hardening, the parameters used in temperature are determined, mostly, empirically, without established criteria, ie, in most cases, the temperature values tend to be same. As the vast majority of parts produced in the industry is subjected to deformation in steel low carbon, this was chosen as material for the manufacture of the samples used in the experiment. These samples were subjected to various degrees of cold bending and applying for recrystallization annealing with controlled variation of parameters. By intercomparison of samples and application of various tests were characterized hardness, metallographic structure, average size of the precipitate, and the correlation between the annealing conditions versus the level of recovery of work hardening. Through the data obtained it observed the importance of defining the parameters in a scientific way of heating for recrystallization, failing to affect the characteristics of components.
13

The Exchange of Bismuth Tetra-Iodide and Bismuth Ions in an Ion-Precipitate System

Pitts, James William January 1952 (has links)
This paper is a study of the exchange of bismuth tetra-iodide and bismuth ions in an ion-precipitate system.
14

Quantitative Study Of Precipitate Growth In Ti-6al-4v Using The Phase Field Method

Yang, Fan 15 October 2008 (has links)
No description available.
15

Effect of Oxidation on Weld Strengthof Dissimilar Resistance Weld Interface Between 304 Stainless Steeland Near Equiatomic Austenitic Nitinol Guide Wire

Rudow, Matthew 01 June 2012 (has links) (PDF)
Abbott Vascular encountered strength and variability issues when attempting to resistively weld 304 Stainless Steel to equiatomic Nitinol. Initial observations suggested that passivation layer (Cr2O3, TiO2) formation affected the weld interface. One hundred 304 Stainless Steel/Nitinol pairs were allowed to oxidize in air at room temperature for allowed periods of time (.1, 1, 3, 5, 7, 12, 16, 24, 168, and 336 hours). Each pair was welded resistively with constant current. A Miyachi/Unitek Advanced Data Analysis Monitor (ADAM) recorded the peak resistance at the instance the weld was made. Resistances were compared to Instron 5900 tensile maximum break load (KgF). Use of optical microscopy and Scanning Electron Microscopy (SEM) revealed microstructural reduction of void size at the sample fracture surface (1-.5 µm). Literature suggested the existence of metastable precipitate forms at near equiatomic compositions within the theoretical temperature range (261.9-1425.2 0C). The Instron 5900 mechanically validated presence of precipitates, while Electron Dispersive X-Ray Spectroscopy (EDS) confirmed the existence compositionally. Literature confirms B19’ precipitates size increases with temperature. This suggests higher resistance samples will promote growth of precipitates due to increased heat input. Increased average particle size was observed with increased resistance (0-.3 µm). Crystal lattice inconsistencies between Nitinol parent phase (B2) and B19’ promote premature fracture due to increased misfit dislocation density. Therefore increased weld resistance promotes the growth of incoherent Ti3Ni4 precipitates which inhibit load bearing capabilities, causing premature failure.
16

Precipitate Growth and Coarsening in Ternary Alloys

Bhaskar, Mithipati Siva January 2017 (has links) (PDF)
We have studied precipitate growth and coarsening in ternary alloys using two different phase held models. The first one is a ternary extension of the classical Cahn-Hilliard (C-H) model in which both the phases are characterized using conserved held variables i.e. composition (cB; cC ); mobility matrix and gradient energy efficient are the other input parameters in this model. In the second model, each phase is treated as separate, and phase identify cation is through a (non-conserved) phase held variable ; we have used a grand potential-based (GP) formulation, due to Plapp [1], Choudhury and Nestler [2], where interfacial energy and interface width, as well as free energy and diffusivity matrix for the relevant phases are the input parameters. The first model i.e. the Cahn-Hilliard (C-H) type model is conceptually simple. The model for ternary is a straight forward extension of the binary. The grand potential (GP) formulation has the advantage of being able to incorporate thermodynamic database like Thermocalc in it. We present below a summary of the findings of our research on (a) precipitate growth, precipitate coarsening, and (c) a critical comparison between results from phase held simulations and those from experiments on an Ni-Al-Mo alloy Precipitate growth In our study of precipitate growth in ternary alloys, we end that when both the solute elements have the same diffusivity, precipitate growth behaviour in ternary alloys is identical to that binary alloys; specifically, we recover the temporal power law r2 = kgt relating the particle radius to time, and the growth kg depends only on supersaturation (i.e., equilibrium volume fraction of the precipitate phase), and is independent of the slope of the tie line. However, when one solute element, (say, C) di uses slower than the other (i.e. (DCC =DBB) < 1,(where DBB, DCC are intertie suavities’ in the lab frame of reference), the ux of C at the interface is smaller than that of species B, causing the precipitate to become depleted in C and enriched in B; this process continues until the growth phase enters a scaling regime where we recover the temporal law for growth: r2 = kgt. In this regime, the tie line selected by the precipitate and matrix interfacial compositions is different from the thermodynamic tie line containing the alloy, a result first reported by Coates [3]. After validating our phase held model quantitatively through a critical comparison with Coates' theory of tie line selection, we have characterized the growth behaviour: specifically, we end that growth kg drops with decreasing value of DCC ; the magnitude of this drop is stronger for alloys which (a) are on higher-C tie lines (i.e., the slope of the tie line is higher), and (b) have smaller precipitate volume fractions. Precipitate coarsening In our simulations, we end that precipitate coarsening does indeed enter a scaling regime where the temporal power law r3 = kt (which relates the average precipitate radius r to (b) time t) is valid; the coarsening rate k depends, as expected, not only on precipitate volume fraction, but also on the slope of the tie line and diffusivity ratio (DCC =DBB). (c) (d) When the solutes have equal diffusivity (i.e., (DCC =DBB) = 1), the coarsening behaviour is essentially the same as that in a binary alloy. However, when solute C (say) is the slower di using species, the coarsening rate k drops, with a deeper drop in alloys on higher-C tie lines. Both these conclusions are similar to those from our study of precipitate growth. (e) (f) However, there is a crucial difference between precipitate growth and coarsening in ternary alloys: The suppression in coarsening rate (for DCC < DBB) in ternary alloys is accompanied by another e ect: larger (and growing) precipitates are richer in the faster di using species B, while the smaller and shrinking precipitates are richer in the slower di using C. In other words, during coarsening in ternary alloys, the tie line selected by precipitate and matrix interfacial components depends on precipitate size; during growth, however, the scaling regime is characterized by the same tie line, independent of precipitate size. (g) (h) (i) Critical comparison between theory and experiment (j) (k) (l) We have used the grand potential based phase held model [1] [2] to study coarsening in Ni-Al-Mo alloys. This model has the advantage of ease with which we can incorporate the thermodynamic and kinetic data on real alloys. (m) (n) A comparison of coarsening rate from our 3D simulations with the experimentally observed rate reveals that diffusivity of the faster di using species (which, in Ni-Al-Mo alloys, is aluminium) from our simulations is within an order of magnitude from the experimental value. However the dominant term in the (@ =@c) matrix is underestimated by 2 to 3 orders of magnitude (compared to its value computed from CALPHAD-based thermodynamic data).
17

Precipitate Growth Kinetics : A Phase Field Study

Mukherjee, Rajdip 08 1900 (has links) (PDF)
No description available.
18

Characterisation of Solubility and Aggregation of Alkaline Extracted Plant Cell Wall Biopolymers

Hagbjer, Elizabeth January 2012 (has links)
Up to 30% by mass of plant cell walls are comprised of hemicelluloses. The remainder is comprised of cellulose, lignin and extractives. Potential economic uses of hemicellulose include hydrogels, fibre additives in pulp mill paper-making and as a substrate for fermentation processes. Development of a fermentation process with sugars from hemicellulose has become of increasing interest due to their potential as a feedstock for fermentation-based liquid fuels and other bio-based chemicals. These can be incorporated into existing processes, in particular alkaline chemical pulping mills, where up to 50% of the hemicelluloses are today degraded and eventually combusted. The main objective of this project is to examine the solubility and aggregation properties of xylans (the predominant hemicellulose), as this will hopefully lead to better solubility-based separations for their recovery. This was done at Michigan State University by alkaline extraction at 85°C on milled birch wood, and at 130 and 170°C (both time-dependent) on birch chips, with 50 g/L sodium hydroxide. This was then followed by precipitation/aggregation experiments with ethanol, polyDADMAC (a polycationic flocculant) and by acidification. Characterisation was done by performing dynamic light scattering (DLS) and size exclusion chromatography (SEC) analysis on resolubilised recovered material from the different extraction conditions. From these, size distributions, molecular weights and degrees of polymerization (DP) could be estimated. The DP values for the extracted polymers were higher than the expected values for hardwood xylans, owing to the incoherent SEC chromatograms. This may be due to aggregate formation with other polymers or re-solubilisation issues of the hemicellulose precipitates. The estimated size range for model xylan was between 100 to 300 nm and the ethanol precipitates seemed to also lie around this region, as detected by DLS. One of the major factors contributing to the difficulty of analysing the results was the issue of re-solubilisation of the hemicellulose precipitates and flocculates. / <p>Validerat; 20120827 (anonymous); 2017-02-08 Nedladdad 414 gånger t.o.m. september 2016. Downloaded 414 times up until september 2016 (marisr)</p>
19

Carbonitruration basse pression d'aciers et de pièces obtenues par la technologie MIM / Elaboration of carbonitrided MIM parts

Marray, Tarek 18 December 2012 (has links)
Le traitement de carbonitruration est aujourd'hui un procédé très répandu pour augmenter la résistance mécanique des pièces en acier. Ce type de solution a fait ses preuves dans le cadre de pièces massives, mais l'oxydation interne des couches enrichies reste une limitation conséquente du traitement à pression atmosphérique.C'est dans cette optique scientifique que s'inscrit une partie de cette étude visant le développement d'un traitement de carbonitruration à basse pression, en vue d'une application industrielle. Les nombreuses investigations expérimentales réalisées sur la nuance 16MnCr5 ont permis le développement et la mise au point de deux cycles répondant à deux critères de profondeur de traitement : 0.25 — 0.4 mm et 0.7 — 1.2 mm. Les observations métallurgiques ne révèlent aucune forme de précipitation, ce qui n'est pas le cas lorsque que le traitement est appliqué à une nuance métallurgique plus fortement alliée (Fe - 0.18 %C - 3.12 % Cr - 0.7 %V -0.45 %W).D'un point de vue simulation, les outils de calculs thermodynamiques confirment et clarifient les phénomènes de précipitations observés. L'acier plus fortement allié (qui contient initialement des carbures de vanadium de type MC) présente des carbures de types M23C6 et M7C3 ainsi que des carbonitrures de types M (C, N). En complément à la détermination des phases en présence et de leur composition, une modélisation de la diffusion du carbone et de l'azote est proposée. Le modèle utilise des conditions aux limites déterminées expérimentalement, des coefficients de diffusion du carbone et de l'azote interdépendants issus de la littérature. La cinétique de refroidissement au cours de la trempe est déterminée pour alimenter le modèle de calcul de transformation de phases et simuler le profil de dureté. Le couplage des modèles développés donne des résultats très proches des profils de carbone, azote et duretés mesurés expérimentalement.Une autre partie du travail propose l'intégration du traitement de carbonitruration à basse pression au procédé de mise en œuvre MIM (Moulage par Injection de poudres Métalliques) permettant la réalisation des composants de formes complexes. Les pièces « MIM » obtenues par l'exploitation du feedstock commercial PolyMIM 16MnCr5 intégrant un système de liant soluble à l'eau présentent 10 % de porosité. Les résultats métallurgiques observés sur les pièces MIM carbonitrurées consécutivement au palier de frittage sont identiques à ceux observés sur des pièces massives. La comparaison des profils de diffusion en carbone et azote entre les pièces à 10 et20 % de porosité (obtenu par diminution de la durée du pallier de frittage) montre cependant que le taux de porosité influence la profondeur de traitement. / The carbonitriding treatment is now a widely accepted industrial process to improve the strength of treated steel parts. This type of solution has been proven in the case of massive parts, but internal oxidation of enriched layers remains a significant drawback of the treatment at atmospheric pressure.It is against this scientific backdrop that this project seeks to develop a carbonitriding treatment at low pressure for industrial application. Numerous experimental investigations carried out on the 16MnCr5 steel grade allowed the development of cycles answering two criteria of depth treatment: 0.25 - 0.4 mm 0.7 - 1.2 mm. Metallurgical observations show no form of precipitation, which however is no longer the case when the treatment is applied to a more highly alloyed steel grade (Fe - 0.18% C - 3.12% Cr - 0.7% V -0.45% W).From a simulation point of view, thermodynamic calculations confirm and clarify the precipitation phenomena observed. The more highly alloyed steel (which initially contains vanadium rich carbides of MC type) exhibits carbides of M23C6 and M7C3 type, and carbonitrides of M (C, N) type. To complement the determination of present phases and their composition, it is proposed that the diffusion of carbon and nitrogen be modeled. The model uses experimentally determined boundary conditions, and interdependent nitrogen and carbon taken from the literature. The kinetics of cooling during the quenching is determined to supply the calculation model of phase transformations and simulate the hardness profile. The coupling of developed models gives carbon, nitrogen and hardness profiles very similar to experimentally measured ones.The work also proposes the integration of the low-pressure carbonitriding treatment to the MIM (Metal Injection Moulding) process, allowing the production of complex shapes components. MIM parts obtained from the exploitation of the trade PolyMIM 16MnCr5 feedstock integrating a water-soluble binder system present 10% of porosity. Metallurgical results observed on MIM parts, carbonitrided consecutively to the sintering step are similar to those observed on massive wrought parts. Comparison of carbon and nitrogen profiles of carbonitrided MIM parts containing 10 and 20 % of porosity (obtained by reducing the length of the bearing sintering) shows that the porosity level influences the case depth of MIM parts.
20

Avaliação da reação do hipoclorito de sódio e do gel de clorexidina na superfície do canal radicular / Evaluation of the interaction between sodium hypochlorite and chlorhexidine gel on the root dentin surface

Brum, Thiago Cardoso Bulhões 17 September 2008 (has links)
Quando combinados no interior do canal, hipoclorito de sódio e clorexidina formam um produto insolúvel em água. Esse trabalho teve como objetivo avaliar as conseqüências da utilização do hipoclorito de sódio 1% pH 9 (NaOCl) como substância durante o preparo e do gel de clorexidina a 2% (CLX) como medicação intracanal em diferentes condições, sob a luz do microscópio eletrônico de varredura ambiental (MEVA). Cinqüenta pré-molares humanos inferiores foram preparados com ProTaper Universal®, sendo quarenta com auxílio de NaOCl e Endo-PTC Leve®. Outros dez dentes foram preparados apenas com CLX (Grupo 2). Os espécimes foram submetidos à irrigação final com ácido cítrico (Grupos 1 e 2) e com tiosulfato de sódio 10% e ácido cítrico (Grupo 3). Todos os grupos experimentais foram medicados por 7 dias com clorexidina. Após esse período, a medicação foi removida e foram contados os túbulos visíveis e os túbulos patentes da superfície dentinária, nas imagens obtidas através do MEVA. Houve diferença estatística entre os grupos experimentais e o Grupo controle negativo, exceto no Grupo 3, em que foi utilizado o tiosulfato. Portanto, apenas quando o NaOCl foi inativado, pode-se observar quantidades desejáveis de túbulos visíveis e patentes. / When combined in the interior of the canal, sodium hypochlorite and chlorhexidine form an insoluble product. The aim of this study was to evaluate the consequences of the use of the hipoclorito of sodium 1% pH 9 (NaOCl) as substance during prepare and gel of clorexidina 2% (CHX) as intracanal medication in different conditions, using environmental scanning electron microscope (ESEM). Fifty extracted mandibular premolars had been prepared with ProTaper Universal®. In forty, was used NaOCl and EndoPTC Leve (Tween 80, Urea peroxide and Carbowax associated) during the prepare. Ten teeth had been prepared using CHX only (Group 2). These had been submitted to the final irrigation with citric acid (Groups 1 and 2) and with sodium thiosulfate 10% and citric acid (Group 3). All the experimental groups received 7 days of intracanal medication with CHX. After this period, the medication was determined the numbers of visible and patent tubules on the root dentin surface, using the images captured on ESEM. There were significant differences between the control group and the experimental groups, except in the case where the tiosulfato was used. Therefore, only when NaOCl is inactivated, desirable amount of visible and patent tubules can be observed.

Page generated in 0.0655 seconds