• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de redes neurais para previsão de cargas elétricas de sistemas de energia elétrica

Lopes, Mara Lúcia Martins [UNESP] 27 October 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-10-27Bitstream added on 2014-06-13T20:00:56Z : No. of bitstreams: 1 lopes_mlm_dr_ilha.pdf: 1509538 bytes, checksum: 3842df54e0429972a030219c885bd09a (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nos dias atuais, principalmente pelo fato de alguns sistemas serem desregulamentados, o estudo dos problemas de análise, planejamento e operação de sistemas de energia elétrica é de extrema importância para o funcionamento do sistema. Para isso é necessário que se obtenha, com antecedência, o comportamento da carga elétrica com o propósito de garantir o fornecimento de energia aos consumidores de forma econômica, segura e contínua. Este trabalho propõe o desenvolvimento de redes neurais artificiais utilizadas para resolver o problema de previsão de cargas elétricas. Para tanto, inicialmente, propôs-se a introdução de melhorias na rede neural feedforward com treinamento realizado utilizando o algoritmo retropropagação. Neste caso, foi desenvolvida/implementada a adaptação dos parâmetros de inclinação e translação da função sigmóide (função de ativação da rede neural). A inclusão desta nova estrutura de redes neurais produziu melhores resultados, se comparado à rede neural retropropagação convencional. Essas arquiteturas proporcionam bons resultados, porém, são estruturas de redes neurais que possuem o problema de convergência. O problema de previsão de cargas elétricas a curto-prazo necessita de uma rede neural que forneça uma saída de forma rápida e eficaz. No intuito de solucionar os problemas encontrados com o algoritmo retropropagação foi desenvolvida/implementada uma rede neural baseada na arquitetura ART (Adaptive Rossonance Theory), denominada rede neural ART&ARTMAP nebulosa, aplicada ao problema de previsão de carga elétrica. Trata-se, por conseguinte, da principal contribuição desta tese. As redes neurais, baseadas na arquitetura ART, possuem duas características fundamentais que são de extrema importância para o desempenho da rede (estabilidade e plasticidade), que permite a implementação do treinamento de modo contínuo... / Nowadays due to the deregulamentation it is very important to study the problems of analyzing, planning and operation of electric power systems. For a reliable operation it is necessary to know previously the behavior of the load to guarantee the energy providing to the users with security and continuity and in an economic way. This work proposes to develop artificial neural networks to solve the problem of electric load forecasting. First, it is introduced some improvements on the feedforward neural network, with the training effectuated with the backpropagation algorithm. The improvement was the adaptation of the inclination and translation parameters of the sigmoid function (activation function of the neural network). The inclusion of this new structure provides better results if compared to the conventional backpropagation algorithm. These architectures provide good results, although they are structures that have some convergence problems. The short term electric load forecasting problem needs a neural network that provide a fast and efficient output. To solve this problem a neural network based on the ART (Adaptive Ressonance Theory), called_ fuzzy ART&ARTMAP applied to the load-forecasting problem, was developed and implemented._This is one of the contributions of this work. Neural networks based on the ART architecture have two important characteristics for the network performance, which are stability and plasticity, allowing the continuous training. The fuzzy ART&ARTMAP neural network reduces the imprecision of the results by a mechanism that separates the binary and analogical data and processing them separately. This represents a quality and an improvement on the results (reduction of the processing time and better precision), if compared to the neural network with backpropagation training (often considered as a benchmark in precision by the specialized...(Complete abastract click electronic access below)
2

Desenvolvimento de um sistema dinâmico para predição de cargas elétricas por redes neurais através do paradigma de programação orientada a objeto sob a linguagem JAVA

Campos, Jose Roberto [UNESP] 26 November 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-11-26Bitstream added on 2014-06-13T19:28:04Z : No. of bitstreams: 1 campos_jr_me_ilha.pdf: 1235138 bytes, checksum: 9965ccc979ea59bf6f2a7e8558692b7b (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A previsão de carga, considerada essencial no planejamento da operação energética e nos estudos de ampliação e reforços da rede básica, assume importância estratégica na extensão comercial, valorizando os processos de armazenamento desses dados e da extração de conhecimentos através de técnicas computacionais. Nos últimos anos, diversos trabalhos foram publicados sobre sistemas de previsão de cargas (demanda) elétricas. Nos horizontes de curto, médio e longo prazo, os modelos neurais, estão entre os mais explorados. O objetivo deste trabalho é apresentar um sistema previsor de cargas elétricas de forma simples e eficiente através de sistemas baseados em redes neurais artificiais com treinamento realizado pelo algoritmo back-propagation. Para isto, optou-se pelo desenvolvimento de um software utilizando os paradigmas de programação orientada a objetos para criar um modelo neural de fácil manipulação, e que de certa forma, consiga corrigir o problema dos mínimos locais. Em geral, o sistema desenvolvido é capaz de atribuir os parâmetros da rede neural de forma automática através de processos exaustivos. Os resultados apresentados foram comparados utilizando outros trabalhos em que também se usaram-se os dados da mesma companhia elétrica. Este trabalho apresentou um ganho de desempenho bem satisfatório em relação a outros trabalhos encontrados na literatura para a mesma classe de problemas / Load Forecasting is essential in planning and operation of power systems, in enlarging and reinforcing the basic network, is also very important commercially, valorizing the filing process of these data and extracting knowledge by computational techniques. Lately, several works have been published about electrical load forecasting. Short term, medium term and long term horizons are equally studied. The objective of this work is to present an electrical load forecasting system, which is simple and efficient and based on artificial neural networks whose training is with the back-propagation algorithm. Therefore, a software is developed using the paradigms of the object oriented programming technique to create a neural model which is ease to manipulate, and able to correct the local minimum problem. This system attributes the neural parameters automatically by exhaustive procedures. Results are compared with other works that have used the same data and this work presents a satisfactory performance when compared with those and others found in the literature
3

Previsão de cargas não residenciais mistas por redes neurais ARTMAP Fuzzy /

Alves, Marleide Ferreira. January 2019 (has links)
Orientador: Anna Diva Plasencia Lotufo / Resumo: Os sistemas de energia elétrica estão passando por transformações. Aos poucos, técnicas de sistemas de informação estão sendo incorporadas aos sistemas atuais de energia. Basicamente este é o conceito de smart grid. Esta incorporação visa aumentar a eficiência dos sistemas de energia elétrica, pois os diversos agentes envolvidos em todo o sistema terão à disposição informações mais completas, precisas e de forma praticamente instantânea. Como consequência, haverá um aumento significativo de dados disponíveis para serem empregados de variadas formas. Um exemplo do uso de dados é a previsão de demanda de energia elétrica. De uma forma geral, previsões servem como suporte para suprir demandas, estimar custos ou justificar investimentos futuros. No campo de previsão de demanda de cargas elétricas existem diversos modelos na literatura, a grande maioria se concentra em níveis mais agregados, que atendem a grandes consumidores em que o fornecimento de energia é feito, por exemplo, por uma subestação. Uma smart grid também coloca à disposição as informações de consumo de energia em níveis cada vez menos agregados, como uma residência ou um prédio comercial. Realizar previsões neste nível é um desafio, pois essas demandas são muito influenciadas pelo comportamento humano. Diferentemente dos níveis mais agregados, modelos de previsão para níveis menos agregados, ou desagregados, ainda são poucos. O objetivo deste trabalho é fazer a previsão de cargas elétricas não residenciais mistas ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Electrical power systems are in transformation nowadays. Gradually, information system technology are being introduced to the energy systems. Basically, this is the concept of smart grid. This new concept aims to improve the efficiency of the energy systems, once the evolved agents will provide complete and precise information instantaneously. This way, a significant increase in data will be available to be employed in several forms. One example in using these data is electric energy demand forecasting. In general, predictions are support to provide electric load demand, estimate costs or justify future investments. Concerning electric load demand, there are several models in the literature, and the majority is concentrated in aggregated levels, attending large consumers, where, for example, the energy supply is provided by a substation. Considering the smart grid, there are consumption information in less aggregated levels as for example residences or commercial buildings. Therefore, realizing predictions in these levels (less aggregated) is a challenge, once the demand is influenced by the human behavior. The models for predicting loads in aggregated levels are common, in the contrary of less aggregated that are few. This work aims to predict short term mixed nonresidential electric loads using data from a Brazilian University. Firstly, Fuzzy ARTMAP Neural Network is chosen to execute the predictions, and afterwards a hybrid methodology containing Fuzzy ARTMAP and Square Mi... (Complete abstract click electronic access below) / Doutor
4

Metodologias de inteligência computacional aplicadas ao problema de previsão de carga a curto prazo

BRAGA, Marcus de Barros 27 December 2010 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2014-01-13T19:55:51Z No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_MetodologiasInteligenciaComputacional.pdf: 1516913 bytes, checksum: ba084e153a765451087625cebf80e43a (MD5) / Approved for entry into archive by Ana Rosa Silva(arosa@ufpa.br) on 2014-01-16T12:33:42Z (GMT) No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_MetodologiasInteligenciaComputacional.pdf: 1516913 bytes, checksum: ba084e153a765451087625cebf80e43a (MD5) / Made available in DSpace on 2014-01-16T12:33:42Z (GMT). No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_MetodologiasInteligenciaComputacional.pdf: 1516913 bytes, checksum: ba084e153a765451087625cebf80e43a (MD5) Previous issue date: 2010 / Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas. / Several activities of planning and operation in power systems rely on knowledge of early and accurate demand of electric load. For this reason, power generation and distribution companies are increasingly using technologies for load forecasting. These estimative may have a very short, short, medium or long-term horizon. Numerous statistical methods have been used for the problem of prediction. All these methods work well under normal conditions, but fail in situations where unexpected changes in the parameters of the environment occur. Currently, techniques based on Computational Intelligence have been presented in the literature with satisfactory results for the problem of load forecasting.Considering then the importance of load forecasting for the electric power systems, in this thesis a new approach to the load forecasting problem is evaluated by Auto-Associative Neural Networks and Genetic Algorithms. Three models based on Computational Intelligence are also presented with their performance evaluated and compared with the proposed system. With the obtained results, it was found that the proposed model is satisfactory for the problem of forecasting, thereby strengthening the applicability of computational intelligence methodologies to the problem of load prediction.
5

Previsão de cargas elétricas a curto prazo por combinação de previsões via regressão simbólica

Braga, Douglas de Oliveira Matos 31 August 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-12T11:44:53Z No. of bitstreams: 1 douglasdeoliveiramatosbraga.pdf: 1221207 bytes, checksum: 2e8c8b8de9aa188f87fe5670354d478c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T13:56:44Z (GMT) No. of bitstreams: 1 douglasdeoliveiramatosbraga.pdf: 1221207 bytes, checksum: 2e8c8b8de9aa188f87fe5670354d478c (MD5) / Made available in DSpace on 2018-01-23T13:56:44Z (GMT). No. of bitstreams: 1 douglasdeoliveiramatosbraga.pdf: 1221207 bytes, checksum: 2e8c8b8de9aa188f87fe5670354d478c (MD5) Previous issue date: 2017-08-31 / O planejamento energético é base para as tomadas de decisões nas companhias de energia elétrica e, para isto, depende fortemente da disponibilidade de previsões acuradas para as cargas. Devido á inviabilidade de armazenamentos em larga-escala e o custo elevado de compras de energia a curto prazo, além da possibilidade de multas e sanções de órgãos governamentais, previsões em curto prazo são importantes para a otimização da alocação de recursos e da geração de energia. Neste trabalho utilizamos nove métodos univariados de séries temporais para a previsão de cargas a curto prazo, com horizontes de 1 a 24 horas a frente. Buscando melhorar a acurácia das previsões, propomos um método de combinação de previsões através de Regressão Simbólica, que combina de forma não-linear as previsões obtidas pelos nove métodos de séries temporais utilizados. Diferente de outros métodos não-lineares de regressão, a Regressão Simbólica não precisa de uma especificação previa da forma funcional. O método proposto é aplicado em uma série real da cidade do Rio de Janeiro (RJ), que contém cargas horárias de 104 semanas dos anos de 1996 e 1997. Comparamos, através de critérios indicados na literatura, os resultados obtidos pelo método proposto com os resultados obtidos por métodos tradicionais de combinação de previsões e ao resultado de simulações de redes neurais artificiais aplicados ao mesmo conjunto de dados. O método proposto obteve melhores resultados, que indicam que a não-linearidade pode ser aspecto importante para combinação de previsões no problema de previsão de carga a curto prazo / Decision-making in energy companies relies heavily on the availability of accurate load forecasts. Because storing electricity on a large scale is not viable, the cost of short-term energy purchasing is high, and there are government fines and sanctions for failing to supply energy on demand, short-term load forecasts are important for the optimization of resource allocation and energy production. In this work we used nine univariate time series methods for short-term load forecasts, with forecast horizons ranging from 1 to 24 hours ahead. In order to improve the accuracy of forecasts, we propose a method of combining forecasts through Symbolic Regression, which combines in a non-linear way the forecasts obtained by the nine methods of the time series used. Unlike other non-linear regression methods, Symbolic Regression does not need a previous specification of the function structure. We applied the proposed method to a real time series of the city of Rio de Janeiro (RJ), which contains data on hourly loads of 104 weeks in the years 1996 and 1997. We compare, through the criteria indicated in the literature, the results obtained by the proposed method with the results obtained by traditional methods of forecasts combination and the result obtained by artificial neural networks applied to the same dataset. The method has yielded better results, indicating that non-linearity may be important in combining predictions in short term load forecasts.
6

Previsão do consumo de energia elétrica a curto prazo, usando combinações de métodos univariados

Carneiro, Anna Cláudia Mancini da Silva 26 September 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-02T12:24:39Z No. of bitstreams: 1 annaclaudiamancinidasilvacarneiro.pdf: 1333903 bytes, checksum: a7b3819bb5b0e1adb8efd07bca0f9aa2 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T19:35:55Z (GMT) No. of bitstreams: 1 annaclaudiamancinidasilvacarneiro.pdf: 1333903 bytes, checksum: a7b3819bb5b0e1adb8efd07bca0f9aa2 (MD5) / Made available in DSpace on 2017-03-06T19:35:55Z (GMT). No. of bitstreams: 1 annaclaudiamancinidasilvacarneiro.pdf: 1333903 bytes, checksum: a7b3819bb5b0e1adb8efd07bca0f9aa2 (MD5) Previous issue date: 2014-09-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A previsão de cargas elétricas é fundamental para o planejamento das empresas de energia. O foco deste estudo são as previsões a curto prazo; assim, aplicamos métodos univariados de previsão de séries temporais a uma série real de cargas elétricas de 104 semanas no Rio de Janeiro, nos anos de 1996 e 1997, e experimentamos várias combinações dos métodos de melhor desempenho. As combinações foram feitas pelo método outperformance, uma combinação linear simples, com pesos fixos. Os resultados das combinações foram comparados ao de simulações de redes neurais artificiais que solucionam o mesmo problema, e ao resultado de um método de amortecimento de dupla sazonalidade aditiva. No geral, este método de amortecimento obteve os melhores resultados, e talvez seja o mais adequado e confiável para aplicações práticas, embora necessite de melhorias para garantir a extração completa da informação contida nos dados. / Forecasting the demand for electric power is crucial for the production planning in energy utilities. The focus of this study are the short-term forecasts. We apply univariate time series methods to the forecasting of a series containing observations of the energy consumption of 104 weeks in Rio de Janeiro, in 1996 and 1997, and experiment with several combinations of the methods which have the best performance. These combinations are done by the outperformance method, a simple linear combination with fixed weights. The results were compared to those obtained by neural networks on the same problem, and with the results of a exponential smoothing method for dual additive seasonality. Overall, the exponential smoothing method achieved the best results, and was shown to be perhaps the most reliable and suitable for practical applications, even though it needs improvements to ensure complete extraction of the information contained in the data.

Page generated in 0.0677 seconds