Spelling suggestions: "subject:"principalkomponentanalys"" "subject:"principalkomponentsanalys""
11 |
Utformning av mjukvarusensorer för avloppsvatten med multivariata analysmetoder / Design of soft sensors for wastewater with multivariate analysisAbrahamsson, Sandra January 2013 (has links)
Varje studie av en verklig process eller ett verkligt system är baserat på mätdata. Förr var den tillgängliga datamängden vid undersökningar ytterst begränsad, men med dagens teknik är mätdata betydligt mer lättillgängligt. Från att tidigare enbart haft få och ofta osammanhängande mätningar för någon enstaka variabel, till att ha många och så gott som kontinuerliga mätningar på ett större antal variabler. Detta förändrar möjligheterna att förstå och beskriva processer avsevärt. Multivariat analys används ofta när stora datamängder med många variabler utvärderas. I det här projektet har de multivariata analysmetoderna PCA (principalkomponentanalys) och PLS (partial least squares projection to latent structures) använts på data över avloppsvatten insamlat på Hammarby Sjöstadsverk. På reningsverken ställs idag allt hårdare krav från samhället för att de ska minska sin miljöpåverkan. Med bland annat bättre processkunskaper kan systemen övervakas och styras så att resursförbrukningen minskas utan att försämra reningsgraden. Vissa variabler är lätta att mäta direkt i vattnet medan andra kräver mer omfattande laboratorieanalyser. Några parametrar i den senare kategorin som är viktiga för reningsgraden är avloppsvattnets innehåll av fosfor och kväve, vilka bland annat kräver resurser i form av kemikalier till fosforfällning och energi till luftning av det biologiska reningssteget. Halterna av dessa ämnen i inkommande vatten varierar under dygnet och är svåra att övervaka. Syftet med den här studien var att undersöka om det är möjligt att utifrån lättmätbara variabler erhålla information om de mer svårmätbara variablerna i avloppsvattnet genom att utnyttja multivariata analysmetoder för att skapa modeller över variablerna. Modellerna kallas ofta för mjukvarusensorer (soft sensors) eftersom de inte utgörs av fysiska sensorer. Mätningar på avloppsvattnet i Linje 1 gjordes under tidsperioden 11 – 15 mars 2013 på flera ställen i processen. Därefter skapades flera multivariata modeller för att försöka förklara de svårmätbara variablerna. Resultatet visar att det går att erhålla information om variablerna med PLS-modeller som bygger på mer lättillgänglig data. De framtagna modellerna fungerade bäst för att förklara inkommande kväve, men för att verkligen säkerställa modellernas riktighet bör ytterligare validering ske. / Studies of real processes are based on measured data. In the past, the amount of available data was very limited. However, with modern technology, the information which is possible to obtain from measurements is more available, which considerably alters the possibility to understand and describe processes. Multivariate analysis is often used when large datasets which contains many variables are evaluated. In this thesis, the multivariate analysis methods PCA (principal component analysis) and PLS (partial least squares projection to latent structures) has been applied to wastewater data collected at Hammarby Sjöstadsverk WWTP (wastewater treatment plant). Wastewater treatment plants are required to monitor and control their systems in order to reduce their environmental impact. With improved knowledge of the processes involved, the impact can be significantly decreased without affecting the plant efficiency. Several variables are easy to measure directly in the water, while other require extensive laboratory analysis. Some of the parameters from the latter category are the contents of phosphorus and nitrogen in the water, both of which are important for the wastewater treatment results. The concentrations of these substances in the inlet water vary during the day and are difficult to monitor properly. The purpose of this study was to investigate whether it is possible, from the more easily measured variables, to obtain information on those which require more extensive analysis. This was done by using multivariate analysis to create models attempting to explain the variation in these variables. The models are commonly referred to as soft sensors, since they don’t actually make use of any physical sensors to measure the relevant variable. Data were collected during the period of March 11 to March 15, 2013 in the wastewater at different stages of the treatment process and a number of multivariate models were created. The result shows that it is possible to obtain information about the variables with PLS models based on easy-to-measure variables. The best created model was the one explaining the concentration of nitrogen in the inlet water.
|
12 |
Svensk översättning och validering av The Voice Symptom Scale (VoiSS)Stölten, Katrin, Svanell, Klara January 2011 (has links)
Självskattningsformulär utgör ett viktigt kliniskt redskap för både utredning och intervention av röstproblem men i nuläget är tillgången till olika formulär i Sverige begränsad då antalet validerade svenska översättningar är få. Syfte med studien var att översätta och preliminärt validera The Voice Symptom Scale (VoiSS) som består av 30 frågor tilldelade komponenterna Nedsättning, Emotionellt och Fysiskt. Den svenska versionen av VoiSS framtogs genom ”Forward-backward Translation” med en efterföljande pilotstudie. Sammanlagt deltog 203 vuxna individer som rekryterades via webb- och pappersenkät. Av dessa uppgav 86 deltagare att de upplevde röstbesvär. Resultaten visade på tydliga gruppskillnader där gruppen Med upplevda röstproblem genererade högre genomsnittliga svarspoäng än gruppen Utan upplevda röstproblem. Inga överlappningar kunde konstateras. En principalkomponentanalys (PCA) var i stort sett förenlig med en trekomponentstruktur som tillsammans med gruppseparationen visade på hög konstruktvaliditet. Vidare noterades samstämmighet mellan den svenska versionen och VoiSS-originalet. Sensitivitets- och specificitetsvärden bekräftade en hög diagnostisk validitet. Slutsatsen drogs att formuläret med god validitet förmår att diagnosticera upplevelse av röstproblem. Den preliminära valideringen visade således att den svenska versionen av VoiSS kan användas som ett instrument vid utredning av röstproblem men att ytterligare forskning behövs för att säkerställa formulärets användbarhet i klinisk verksamhet. / Self-assessment questionnaires are important clinical instruments for both investigation and intervention of voice problems but at date access to various questionnaires in Sweden is limited due to few validated translations. The objective of this study was to translate and preliminary validate the Voice Symptom Scale (VoiSS) consisting of 30 questions assigned Impairment, Emotional and Physical. The Swedish version of VoiSS was developed through ”Forward-backward Translation” followed by a pilot study. The questionnaire was completed by a total of 203 adults who were recruited by web and paper survey. Out of these, 86 participants experienced voice problems. Obvious group differences were observed in that the group With experienced voice problems generated higher mean scores than the group Without experienced voice problems. No overlaps were observed. A principal component analysis (PCA) was largely consistent with a three component structure that, combined with the group separation, affirmed high construct validity. Moreover, concurrence between the Swedish version and the VoiSS-original was found. Calculated values of sensitivity and specificity confirmed a high diagnostic validity. The conclusion was made that the self-assessment questionnaire with good validity was able to diagnose experience of voice problems. In conclusion, preliminary validation showed that the Swedish version of VoiSS can be used as a diagnostic tool in assessing voice problems. However, more research needs to be done to ensure the questionnaires adaptation to clinical context.
|
13 |
PCA för detektering av avvikande händelser i en kraftvärmeprocess / PCA for outlier detection in a CHP plantKönigsson, Sofia January 2018 (has links)
Panna 6 på Högdalenverket i södra Stockholm (P6) med tillhörande ångturbin producerar kraftvärme genom förbränning av utsorterat returbränsle från industri och samhälle. För att minimera underhållskostnader och öka anläggningens tillgänglighet är det viktigt att fel och oönskat processbeteende kan upptäckas i ett tidigt skede. I detta syfte testas här en metod för detektering av avvikande händelser med hjälp av principalkomponentanalys (PCA) på produktionsprocessen för kraftvärme. En PCA-modell med reducerad dimension skapas utifrån processdata från en problemfri driftperiod och används som mall för inkommande data att jämföras med i ett kontrolldigram. Avvikelser ifrån modellen bör vara en indikation på att ett onormalt drifttillstånd har uppkommit och orsaker till avvikelsen analyseras. Som avvikande händelse testas två fall av tubläckage som uppstod i ett av tubpaketen för kylning av rökgaserna under 2014 och 2015. Resultatet visar att processavvikelser ifrån normallägesmodellerna tydligt syns i kontrolldiagrammen vid båda tubläckagen och avvikelserna kan härledas till variabler som är kopplade till tubläckage. Det finns potential för att tillämpa metoden för övervakning av processen, en svårighet ligger i att skapa en modell som representerar processen när den är stabil på grund av att det finns många varierande driftfall som anses stabila, detta kräver vidare arbete. Metoden kan redan användas som analysverktyg exempelvis vid misstanke om tubläckage. / Boiler 6 at the Högdalen facility in southern Stockholm (P6) combined with a a steam turbine produces Combined Heat and Power (CHP) through combustion of treated industry waste. In order to minimise maintenance costs and increase plant availability it is of importance to detect process faults and deviations at an early state. In this study a method for outlier detection using Principal Component Analysis (PCA) is applied on the CHP production process. A PCA model with reduced dimension is created using process data from a problem free period and is used as a template for new operating data to be compared with in a control chart. Deviations from the model should be an indication of the presence of abnormal conditions and the reasons for the deviations are analysed. Two cases of tube failure in 2014 and 2015 are used to study the deviations. The result shows that process deviations from the models can be detected in the control chart in both cases of tube failure and the variables known to be associated with tube failure contributes highly to the deviating behaviour. There is potential for applying this method for process control, a difficulty lies in creating a model that represents the stable process when there are big variances within what is considererd a stable process state. The method can be used for data analysis when suspecting a tube failure.
|
14 |
PCA based dimensionality reduction of MRI images for training support vector machine to aid diagnosis of bipolar disorder / PCA baserad dimensionalitetsreduktion av MRI bilder för träning av stödvektormaskin till att stödja diagnostisering av bipolär sjukdomChen, Beichen, Chen, Amy Jinxin January 2019 (has links)
This study aims to investigate how dimensionality reduction of neuroimaging data prior to training support vector machines (SVMs) affects the classification accuracy of bipolar disorder. This study uses principal component analysis (PCA) for dimensionality reduction. An open source data set of 19 bipolar and 31 control structural magnetic resonance imaging (sMRI) samples was used, part of the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study funded by the NIH Roadmap Initiative aiming to foster breakthroughs in the development of novel treatments for neuropsychiatric disorders. The images underwent smoothing, feature extraction and PCA before they were used as input to train SVMs. 3-fold cross-validation was used to tune a number of hyperparameters for linear, radial, and polynomial kernels. Experiments were done to investigate the performance of SVM models trained using 1 to 29 principal components (PCs). Several PC sets reached 100% accuracy in the final evaluation, with the minimal set being the first two principal components. Accumulated variance explained by the PCs used did not have a correlation with the performance of the model. The choice of kernel and hyperparameters is of utmost importance as the performance obtained can vary greatly. The results support previous studies that SVM can be useful in aiding the diagnosis of bipolar disorder, and that the use of PCA as a dimensionality reduction method in combination with SVM may be appropriate for the classification of neuroimaging data for illnesses not limited to bipolar disorder. Due to the limitation of a small sample size, the results call for future research using larger collaborative data sets to validate the accuracies obtained. / Syftet med denna studie är att undersöka hur dimensionalitetsreduktion av neuroradiologisk data före träning av stödvektormaskiner (SVMs) påverkar klassificeringsnoggrannhet av bipolär sjukdom. Studien använder principalkomponentanalys (PCA) för dimensionalitetsreduktion. En datauppsättning av 19 bipolära och 31 friska magnetisk resonanstomografi(MRT) bilder användes, vilka tillhör den öppna datakällan från studien UCLA Consortium for Neuropsychiatric Phenomics LA5c som finansierades av NIH Roadmap Initiative i syfte att främja genombrott i utvecklingen av nya behandlingar för neuropsykiatriska funktionsnedsättningar. Bilderna genomgick oskärpa, särdragsextrahering och PCA innan de användes som indata för att träna SVMs. Med 3-delad korsvalidering inställdes ett antal parametrar för linjära, radiala och polynomiska kärnor. Experiment gjordes för att utforska prestationen av SVM-modeller tränade med 1 till 29 principalkomponenter (PCs). Flera PC uppsättningar uppnådde 100% noggrannhet i den slutliga utvärderingen, där den minsta uppsättningen var de två första PCs. Den ackumulativa variansen över antalet PCs som användes hade inte någon korrelation med prestationen på modellen. Valet av kärna och hyperparametrar är betydande eftersom prestationen kan variera mycket. Resultatet stödjer tidigare studier att SVM kan vara användbar som stöd för diagnostisering av bipolär sjukdom och användningen av PCA som en dimensionalitetsreduktionsmetod i kombination med SVM kan vara lämplig för klassificering av neuroradiologisk data för bipolär och andra sjukdomar. På grund av begränsningen med få dataprover, kräver resultaten framtida forskning med en större datauppsättning för att validera de erhållna noggrannheten.
|
Page generated in 0.1088 seconds