Spelling suggestions: "subject:"problème dde martingale"" "subject:"problème dde martingales""
1 |
Stationnarité forte sur des graphes discrets ou quantiques / Strong stationnarity on discrete or quantum graphsCopros, Guillaume 19 July 2018 (has links)
Dans cette thèse, on s'intéresse à la notion de temps fort de stationnarité et à celle, étroitement liée, de dual de stationnarité forte. Ces outils permettent d'étu- dier la convergence de processus ergodiques, en déterminant un instant aléatoire où l'équilibre est atteint. Les espaces d'état des processus considérés ici sont des graphes continus ou discrets. Dans la première partie, on considère le cas discret, et on dégage une condition nécessaire et suffisante à l'existence, pour n'importe quelle loi initiale, d'un temps fort de stationnarité fini. Pour cela, on construit explicitement un dual de station- narité forte, à valeurs dans l'ensemble des parties connexes du graphe, qui évolue à chaque étape en ajoutant ou en enlevant des points de sa frontière. Lorsque cette opération sépare l'ensemble dual en plusieurs parties, afin de ne pas le déconnecter, une de ces parties est choisie au hasard, avec une probabilité proportionnelle à son poids par la mesure invariante. On s'intéresse également au comportement général d'un processus dual, et on donne quelques exemples différents de celui construit précédemment. Dans la deuxième partie, on traite le cas continu, et le processus étudié est alors une diffusion. On caractérise notamment sa mesure invariante, et on explicite un générateur infinitésimal qui devrait être celui d'un processus dual. Néanmoins, ce cas s'avère plus compliqué que le cas discret. Le processus dual n'est donc construit que pour un mouvement brownien sur un graphe particulier, comme l'unique so- lution d'un problème de martingale. Des pistes sont présentées pour traiter des diffusions sur des graphes plus généraux, notamment en utilisant la convergence d'une suite de processus de saut tels que ceux présentés dans la première partie. / In this thesis, we are interested in the notion of strong stationary time, and in that, strongly connected, of strong stationary dual. These tools allow to study the convergence of ergodic processes, by determining a random time when the equilibrium is reached. The state space of the considered processes are discrete or continuous graphs. In the first part, we consider the discrete case, and we explicit a necessary and sufficient condition to the existence, for any initial distribution, of a finite strong stationary time. To do so, we construct explicitly a strong stationary dual, with values in the set of connected subsets of the graph, which evolves at each step by adding or removing some points at its border. Whenever this operation separates the dual set in several parts, in order not to disconnect it, one of these parts is chosen randomly, with a probability proportionnal to its weight relative to the invariant distribution. We also study the general behaviour of any dual process,2 and we give some other examples. In the second part, we deal with the continuous case, and the studied process is then a diffuion. We caracterize its invariant distribution, and we explicit an infinitesimal generator, which is expected to be that of a dual process. Nevertheless, this case turns out to be a little more involved that the discrete one. The dual process is thus constructed only for a brownian motion on a particular graph, as the unique solution of a martingale problem. Some leads are given to solve the case of diffusions on more general graphs, especially by using the convergence of a sequence of jump processes such as those presented in the first part.
|
2 |
Existence, unicité et approximation des équations de Schrödinger stochastiques.Pellegrini, Clément 23 June 2008 (has links) (PDF)
Les "équations de Schrödinger stochastiques" sont des équations différentielles stochastiques de type non classique qui apparaissent dans le domaine de la mesure en mécanique quantique. Leurs solutions sont appelées "trajectoires quantiques" et décrivent l'évolution de petits systèmes quantiques ouverts soumis à une mesure continue de type indirecte (on mesure l'environnement qui interagit avec le petit système).<br /><br />Habituellement, les justifications mathématiques et physiques de ces modèles sont loin d'être intuitives et évidentes. Soit elles manquent de rigueur car basées sur des arguments heuristiques, soit elles uilisent des outils mathématiques lourds et très abstraits (Filtrage quantique, espérance conditionnelle dans les algèbres de Von Neumann...).<br /><br />Dans cette thèse, on met en place un modèle discret de mesure en mécanique quantique. Ce modèle est basé sur celui des "interactions quantiques répétées" développé par Stéphane ATTAL et Yan PAUTRAT. Le cadre est le suivant. On considère un petit système en contact avec une chaine infinie de petits systèmes (tous notés H) identiques et indépedants entre eux. Chaque copie H interagit avec le petit système pendant un temps h. Après chaque interaction, on effectue une mesure sur H. Cette série de mesures entraine une série de modifications aléatoires de l'état du petit système. Cette série de modifications est alors décrite à l'aide d'une chaine de Markov dépendante du paramètre h. On montre alors que l'on peut obtenir les trajectoires quantiques, solutions des équations de Schrödinger stochastiques, comme limite continue (h tend vers 0) à partir de ces chaines de Markov. Ce résultat de convergence nécessite, au préalable, une étude complète des problèmes d'existence et d'uncité des solutions.<br /><br />Grâce à ce résultat de convergence, à partir d'un modèle physique discret, on justifie de façon rigoureuse et intuive l'utilisation des équations de Schrödinger stochastiques. On étend ensuite ces résultats dans le cas de modèles en dimension finie quelconque et on introduit la notion de controle.
|
3 |
Projection markovienne de processus stochastiquesBentata, Amel 28 May 2012 (has links) (PDF)
Cette thèse porte sur l'étude mathématique du problème de projection Markovienne d'un processus aléatoire: il s'agit de construire, étant donné un processus aléatoire ξ, un processus de Markov ayant à chaque instant la même distribution que ξ. Cette construction permet ensuite de déployer les outils analytiques disponibles pour l'étude des processus de Markov (équations aux dérivées partielles ou équations integro-différentielles) dans l'étude des lois marginales de ξ, même lorsque ξ n'est pas markovien. D'abord étudié dans un contexte probabiliste, notamment par Gyöngy (1986), ce problème a connu un regain d'intêret motivé par les applications en finance, sous l'impulsion des travaux de B. Dupire. La thèse entreprend une étude systématique des aspects probabilistes (construction d'un processus de Markov mimant les lois marginales de ξ) et analytiques (dérivation d'une équation de Kolmogorov forward) de ce problème, étendant les résultats existants au cas de semimartingales discontinues. Notre approche repose sur l'utilisation de la notion de problème de martingale pour un opérateur integro-différentiel. Nous donnons en particulier un résultat d'unicité pour une équation de Kolmogorov associée à un opérateur integro-différentiel non-dégénéré. Ces résultats ont des applications en finance: nous montrons notamment comment ils peuvent servir à réduire la dimension d'un problème à travers l'exemple de l'évaluation des options sur indice en finance.
|
4 |
Modélisation stochastique de systèmes biologiques multi-échelles et inhomogènes en espace / Stochastic Modeling of Multiscale Biological Systems with Spatial InhomogeneityNguepedja Nankep, Mac jugal 22 March 2018 (has links)
Les besoins grandissants de prévisions robustes pour des systèmes complexes conduisent à introduire des modèles mathématiques considérant un nombre croissant de paramètres. Au temps s'ajoutent l'espace, l'aléa, les échelles de dynamiques, donnant lieu à des modèles stochastiques multi-échelles avec dépendance spatiale (modèles spatiaux). Cependant, l'explosion du temps de simulation de tels modèles complique leur utilisation. Leur analyse difficile a néanmoins permis, pour les modèles à une échelle, de développer des outils puissants: loi des grands nombres (LGN), théorème central limite (TCL), ..., puis d'en dériver des modèles simplifiés et algorithmes accélérés. Dans le processus de dérivation, des modèles et algorithmes dits hybrides ont vu le jour dans le cas multi-échelle, mais sans analyse rigoureuse préalable, soulevant ainsi la question d'approximation hybride dont la consistance constitue l'une des motivations principales de cette thèse.En 2012, Crudu, Debussche, Muller et Radulescu établissent des critères d'approximation hybride pour des modèles homogènes en espace de réseaux de régulation de gènes. Le but de cette thèse est de compléter leur travail et le généraliser à un cadre spatial.Nous avons développé et simplifié différents modèles, tous des processus de Markov de sauts pures à temps continu. La démarche met en avant, d'une part, des conditions d'approximations déterministes par des solutions d'équations d'évolution (type réaction-advection-diffusion), et, d'autre part, des conditions d'approximations hybrides par des processus stochastiques hybrides. Dans le cadre des réseaux de réactions biochimiques, un TCL est établi. Il correspond à une approximation hybride d'un modèle homogène simplifié à deux échelles de temps (suivant Crudu et al.). Puis, une LGN est obtenue pour un modèle spatial à deux échelles de temps. Ensuite, une approximation hybride est établie pour un modèle spatial à deux échelles de dynamique en temps et en espace. Enfin, des comportements asymptotiques en grandes populations et en temps long sont présentés pour un modèle d'épidémie de choléra, via une LGN suivie d'une borne supérieure pour les sous-ensembles compacts, dans le cadre d'un principe de grande déviation (PGD) correspondant.À l'avenir, il serait intéressant, entre autres, de varier la géométrie spatiale, de généraliser le TCL, de compléter les estimations du PGD, et d'explorer des systèmes complexes issus d'autres domaines. / The growing needs of precise predictions for complex systems lead to introducing stronger mathematical models, taking into account an increasing number of parameters added to time: space, stochasticity, scales of dynamics. Combining these parameters gives rise to spatial --or spatially inhomogeneous-- multiscale stochastic models. However, such models are difficult to study and their simulation is extremely time consuming, making their use not easy. Still, their analysis has allowed one to develop powerful tools for one scale models, among which are the law of large numbers (LLN) and the central limit theorem (CLT), and, afterward, to derive simpler models and accelrated algorithms. In that deduction process, the so-called hybrid models and algorithms have arisen in the multiscale case, but without any prior rigorous analysis. The question of hybrid approximation then shows up, and its consistency is a particularly important motivation of this PhD thesis.In 2012, criteria for hybrid approximations of some homogeneous regulation gene network models were established by Crudu, Debussche, Muller and Radulescu. The aim of this PhD thesis is to complete their work and generalize it afterward to a spatial framework.We have developed and simplified different models. They all are time continuous pure jump Markov processes. The approach points out the conditions allowing on the the one hand deterministic approximations by solutions of evolution equations of type reaction-advection-diffusion, and, on the other hand, hybrid approximations by hybrid stochastic processes. In the field of biochemical reaction networks, we establish a CLT. It corresponds to a hybrid approximation of a simplified homogeneous model (due to Crudu et al.). Then a LLN is obtained for a spatial model with two time scales. Afterward, a hybrid approximation is established, for a two time-space scales spatial model. Finally, the asymptotic behaviour in large population and long time are respectively presented for a model of cholera epidemic, through a LLN followed by the upper bound for compact sets, in the context of a corresponding large deviation principle (LDP).Interesting future works would be, among others, to study other spatial geometries, to generalize the CLT, to complete the LDP estimates, and to study complex systems from other fields.
|
Page generated in 0.0618 seconds