• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes de discrétisation hybrides pour les problèmes de contact de Signorini et les écoulements de Bingham / Hybrid discretization methods for Signorini contact and Bingham flow problems

Cascavita Mellado, Karol 18 December 2018 (has links)
Cette thèse s'intéresse à la conception et à l'analyse de méthodes de discrétisation hybrides pour les inégalités variationnelles non linéaires apparaissant en mécanique des fluides et des solides. Les principaux avantages de ces méthodes sont la conservation locale au niveau des mailles, la robustesse par rapport à différents régimes de paramètres et la possibilité d’utiliser des maillages polygonaux / polyédriques avec des nœuds non coïncidants, ce qui est très intéressant dans le contexte de l’adaptation de maillage. Les méthodes de discrétisation hybrides sont basées sur des inconnues discrètes attachées aux faces du maillage. Des inconnues discrètes attachées aux mailles sont également utilisées, mais elles peuvent être éliminées localement par condensation statique. Deux applications principales des discrétisations hybrides sont abordées dans cette thèse. La première est le traitement par la méthode de Nitsche du problème de contact de Signorini (dans le cas scalaire) avec une non-linéarité dans les conditions aux limites. Nous prouvons des estimations d'erreur optimales conduisant à des taux de convergence d'erreur d'énergie d'ordre (k + 1), si des polynômes de face de degré k >= 0 sont utilisés. La deuxième application principale concerne les fluides à seuil viscoplastiques. Nous concevons une méthode de Lagrangien augmenté discrète appliquée à la discrétisation hybride. Nous exploitons la capacité des méthodes hybrides d’utiliser des maillages polygonaux avec des nœuds non coïncidants afin d'effectuer l’adaptation de maillage local et mieux capturer la surface limite. La précision et la performance des schémas sont évaluées sur des cas tests bidimensionnels, y compris par des comparaisons avec la littérature / This thesis is concerned with the devising and the analysis of hybrid discretization methods for nonlinear variational inequalities arising in computational mechanics. Salient advantages of such methods are local conservation at the cell level, robustness in different regimes and the possibility to use polygonal/polyhedral meshes with hanging nodes, which is very attractive in the context of mesh adaptation. Hybrid discretizations methods are based on discrete unknowns attached to the mesh faces. Discrete unknowns attached to the mesh cells are also used, but they can be eliminated locally by static condensation. Two main applications of hybrid discretizations methods are addressed in this thesis. The first one is the treatment using Nitsche's method of Signorini's contact problem (in the scalar-valued case) with a nonlinearity in the boundary conditions. We prove optimal error estimates leading to energy-error convergence rates of order (k+1) if face polynomials of degree k >= 0 are used. The second main application is on viscoplastic yield flows. We devise a discrete augmented Lagrangian method applied to the present hybrid discretization. We exploit the capability of hybrid methods to use polygonal meshes with hanging nodes to perform local mesh adaptation and better capture the yield surface. The accuracy and performance of the present schemes is assessed on bi-dimensional test cases including comparisons with the literature
2

Domaines singulierements perturbes en optimisation de formes

Laurain, Antoine 16 June 2006 (has links) (PDF)
En optimisation de formes, de nombreux résultats ont déjà été obtenus dans le <br />cas de domaines à frontière régulière et pour des perturbations régulières de ces domaines. <br />Par contre, l'étude de domaines non-réguliers, tels que des domaines fissurés par exemple, <br />et l'étude de perturbations singulières telles que la création d'un trou dans un domaine est <br />plus récente et plus complexe. Ce nouveau domaine de recherche est motivé par de multiples <br />applications, car en pratique, les hypothèses de régularité ne sont pas toujours vérifiées. Les <br />outils tels que la dérivée topologique permettent d'appréhender ces perturbations singulières <br />de domaines et leur utilisation est maintenant fréquente. <br /><br />Dans la première partie, nous étudions la structure de la dérivée de forme pour des domaines fissurés. Dans le cas d'un ouvert régulier, de classe C1 ou lipschitzien par exemple, <br />la dérivée dépend uniquement des perturbations de la frontière du domaine en direction de <br />la normale. Ce théorème de structure n'est plus valable pour des domaines contenant des <br />fissures. On généralise ici ce théorème de structure aux domaines fissurés en dimension quelconque pour les dérivées premières et secondes. En dimension deux, on retrouve le résultat <br />usuel, à savoir qu'en plus du terme classique, deux nouvelles contributions apparaissent dûes <br />aux extrémités de la fissure. En dimension supérieure, un nouveau terme apparaît en plus du <br />terme classique, dû à la frontière de la variété à bord représentant la fissure. <br /><br />Dans la deuxième partie, nous étudions la perturbation singulière d'un domaine et nous <br />modélisons cette perturbation à l'aide d'extensions auto-adjointes d'opérateurs. Nous décrivons cette modélisation, puis nous montrons comment elle peut être utilisée pour un problème <br />d'optimisation de forme. En définissant une fonctionnelle d'énergie approchée pour ce problème modèle, on retrouve notamment la formule de la dérivée topologique usuelle. <br /><br />Dans la troisième partie, on propose une application numérique de la dérivée topologique <br />et de la dérivée de forme pour un problème non-linéaire. On cherche à maximiser l'énergie <br />associée à la solution d'un problème de Signorini dans un domaine ­. L'évolution du domaine <br />est représentée à l'aide d'une méthode levelset.
3

Méthodes numériques pour les écoulements et le transport en milieu poreux / Numerical methods for flow and transport in porous media

Vu Do, Huy Cuong 25 November 2014 (has links)
Cette thèse porte sur la modélisation de l’écoulement et du transport en milieu poreux ;nous effectuons des simulations numériques et démontrons des résultats de convergence d’algorithmes.Au Chapitre 1, nous appliquons des méthodes de volumes finis pour la simulation d’écoulements à densité variable en milieu poreux ; il vient à résoudre une équation de convection diffusion parabolique pour la concentration couplée à une équation elliptique en pression.Nous nous appuyons sur la méthode des volumes finis standard pour le calcul des solutions de deux problèmes spécifiques : une interface en rotation entre eau salée et eau douce et le problème de Henry. Nous appliquons ensuite la méthode de volumes finis généralisés SUSHI pour la simulation des mêmes problèmes ainsi que celle d’un problème de bassin salé en dimension trois d’espace. Nous nous appuyons sur des maillages adaptatifs, basés sur des éléments de volume carrés ou cubiques.Au Chapitre 2, nous nous appuyons de nouveau sur la méthode de volumes finis généralisés SUSHI pour la discrétisation de l’équation de Richards, une équation elliptique parabolique pour le calcul d’écoulements en milieu poreux. Le terme de diffusion peut être anisotrope et hétérogène. Cette classe de méthodes localement conservatrices s’applique àune grande variété de mailles polyédriques non structurées qui peuvent ne pas se raccorder.La discrétisation en temps est totalement implicite. Nous obtenons un résultat de convergence basé sur des estimations a priori et sur l’application du théorème de compacité de Fréchet-Kolmogorov. Nous présentons aussi des tests numériques.Au Chapitre 3, nous discrétisons le problème de Signorini par un schéma de type gradient,qui s’écrit à l’aide d’une formulation variationnelle discrète et est basé sur des approximations indépendantes des fonctions et des gradients. On montre l’existence et l’unicité de la solution discrète ainsi que sa convergence vers la solution faible du problème continu. Nous présentons ensuite un schéma numérique basé sur la méthode SUSHI.Au Chapitre 4, nous appliquons un schéma semi-implicite en temps combiné avec la méthode SUSHI pour la résolution numérique d’un problème d’écoulements à densité variable ;il s’agit de résoudre des équations paraboliques de convection-diffusion pour la densité de soluté et le transport de la température ainsi que pour la pression. Nous simulons l’avance d’un front d’eau douce assez chaude et le transport de chaleur dans un aquifère captif qui est initialement chargé d’eau froide salée. Nous utilisons des maillages adaptatifs, basés sur des éléments de volume carrés. / This thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We apply the standard finite volume method to compute the solutions of a problem involving a rotating interface between salt and fresh water and of Henry's problem. We then apply the SUSHI scheme to the same problems as well as to a three dimensional saltpool problem. We use adaptive meshes, based upon square volume elements in space dimension two and cubic volume elements in space dimension three. In Chapter 2, we apply the generalized finite volume method SUSHI to the discretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and heterogeneous. This class of locally conservative methods can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon a priori estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present numerical tests. In Chapter 3, we study a gradient scheme for the Signorini problem. Gradient schemes are nonconforming methods written in discrete variational formulation which are based on independent approximations of the functions and the gradients. We prove the existence and uniqueness of the discrete solution as well as its convergence to the weak solution of the Signorini problem. Finally we introduce a numerical scheme based upon the SUSHI discretization and present numerical results. In Chapter 4, we apply a semi-implicit scheme in time together with a generalized finite volume method for the numerical solution of density driven flows in porous media; it comes to solve nonlinear convection-diffusion parabolic equations for the solute and temperature transport as well as for the pressure. We compute the solutions for a specific problem which describes the advance of a warm fresh water front coupled to heat transfer in a confined aquifer which is initially charged with cold salt water. We use adaptive meshes, based upon square volume elements in space dimension two.

Page generated in 0.0797 seconds