• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 79
  • 20
  • 1
  • Tagged with
  • 292
  • 226
  • 224
  • 196
  • 129
  • 103
  • 102
  • 100
  • 100
  • 87
  • 82
  • 80
  • 78
  • 77
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Détection d'anomalies basée sur les représentations latentes d'un autoencodeur variationnel

Caron, Stéphane 01 June 2021 (has links)
Dans ce mémoire, nous proposons une méthodologie qui permet de détecter des anomalies parmi un ensemble de données complexes, plus particulièrement des images. Pour y arriver, nous utilisons un type spécifique de réseau de neurones, soit un autoencodeur variationnel (VAE). Cette approche non-supervisée d'apprentissage profond nous permet d'obtenir une représentation plus simple de nos données sur laquelle nous appliquerons une mesure de distance de Kullback-Leibler nous permettant de discriminer les anomalies des observations "normales". Pour déterminer si une image nous apparaît comme "anormale", notre approche se base sur une proportion d'observations à filtrer, ce qui est plus simple et intuitif à établir qu'un seuil sur la valeur même de la distance. En utilisant notre méthodologie sur des images réelles, nous avons démontré que nous pouvons obtenir des performances de détection d'anomalies supérieures en termes d'aire sous la courbe ROC, de précision et de rappel par rapport à d'autres approches non-supervisées. De plus, nous avons montré que la simplicité de l'approche par niveau de filtration permet d'adapter facilement la méthode à des jeux de données ayant différents niveaux de contamination d'anomalies. / In this master's thesis, we propose a methodology that aims to detect anomalies among complex data, such as images. In order to do that, we use a specific type of neural network called the varitionnal autoencoder (VAE). This non-supervised deep learning approach allows us to obtain a simple representation of our data on which we then use the Kullback-Leibler distance to discriminate between anomalies and "normal" observations. To determine if an image should be considered "abnormal", our approach is based on a proportion of observations to be filtered, which is easier and more intuitive to establish than applying a threshold based on the value of a distance metric. By using our methodology on real complex images, we can obtain superior anomaly detection performances in terms of area under the ROC curve (AUC),precision and recall compared to other non-supervised methods. Moreover, we demonstrate that the simplicity of our filtration level allows us to easily adapt the method to datasets having different levels of anomaly contamination.
12

Suivi d'objet en 6 degrés de liberté avec caméra événementielle

Dubeau, Etienne 15 September 2022 (has links)
Actuellement, les méthodes de suivi d'objet utilisent majoritairement un capteur conventionnel doté d'une fréquence de capture limitée, par exemple : une caméra couleur RGB ou un capteur RGB-D qui fournit également la profondeur à chaque pixel. Ceux-ci ne sont pas idéaux lorsque l'objet se déplace à grande vitesse car des images floues sont produites. Augmenter la fréquence de capture est la solution naïve, mais cela a comme effet d'augmenter le nombre de données capturées et la complexité d'exécution des algorithmes. Ceci cause particulièrement problème dans un contexte de réalité augmentée qui utilise des systèmes embarqués ou mobiles qui ont des capacités de calcul limitées. D'un autre côté, la popularité des capteurs événementiels, qui mesurent les variations d'intensité dans la scène, est en augmentation dû à leur faible puissance d'utilisation, leur faible latence, leur capacité d'acquisition à grande vitesse et le fait qu'ils minimisent le nombre de données capturées. Ce mémoire présente donc une méthode d'apprentissage profond de suivi d'objet à grande vitesse en six degrés de liberté en combinant deux capteurs distincts, soit un capteur RGB-D et une caméra événementielle. Pour permettre l'utilisation des capteurs conjointement, une méthode de calibration temporelle et spatiale est détaillée afin de mettre en registre les images capturées par les deux caméras. Par la suite, une méthode d'apprentissage profond de suivi d'objet est présentée. Celle-ci utilise uniquement des données synthétiques à l'entrainement et utilise les deux capteurs pour améliorer les performances de suivi d'objet en 6DOF, surtout dans les scénarios à grande vitesse. Pour terminer, un jeu de données RGB-D-E est capturé et annoté à la position réelle pour chaque trame. Ce jeu de données est accessible publiquement et peut être utilisé pour quantifier les performances de méthodes futures.
13

Comportement des tunnels en terrains tectonisés : application à la liaison ferroviaire Lyon-Turin

Vu, The Manh 07 December 2010 (has links) (PDF)
Comportement différé, anisotrope à la descenderie de Saint-Martin-la-Porte
14

Réseaux de neurones à convolutions pour la segmentation multi structures d'images par résonance magnétique cardiaque

Zotti, Clément January 2018 (has links)
L'imagerie par résonance magnétique (IRM) est une technique d'acquisition d'images qui permet de visualiser les différents tissus du corps humain. Son principe se base sur le moment magnétique des protons des atomes d'hydrogène. Le corps étant principalement composé d'eau et donc d'hydrogène, cela en fait une méthode de choix pour faire de l'imagerie cardiaque. L'IRM est très utilisée en clinique pour observer et diagnostiquer les différentes maladies cardiaques, comme l'infarctus du myocarde, la cardiomyopathie dilatée ou la cardiomyopathie hypertrophique. Dans le cas du coeur, principalement trois structures anatomiques sont étudiées: la cavité du ventricule gauche, la cavité du ventricule droit et le myocarde. Dans ce but, il est nécessaire de faire une segmentation manuelle, semi-automatique ou automatique de l'image IRM. Une fois ces structures segmentées, différents paramètres physiologiques peuvent être calculés pour évaluer la maladie d'un patient. Souvent, les méthodes de segmentation se concentrent sur la segmentation de la cavité du ventricule gauche. Pour les autres structures, la segmentation est principalement faite à la main par un médecin ce qui demande un temps non négligeable (environ 10 à 15 minutes par coeur). Ce mémoire présente une base de données anonymisée d'images cardiaque contenant 150 patients avec différentes maladies cardiaques. Il présente aussi une nouvelle méthode de segmentation automatique des trois structures sans aucune intervention humaine. La méthode se base sur l'apprentissage profond, ce qui en fait une méthode très rapide (180 millisecondes par volume). Pour rendre les segmentations plus fidèles, elle incorpore un terme de contours qui permet d'avoir une segmentation plus précise des contours des structures et une forme a priori qui permet de rendre la segmentation plus près de celle d'un vrai coeur (sans trous ou anatomie impossible). Cette recherche est faite en collaboration avec l'Université de Bourgogne et l'Université de Lyon en France qui ont permis la mise en place de cette base de données cardiaque et la validation des résultats.
15

Deep learning for image compression / Apprentissage profond pour la compression d'image

Dumas, Thierry 07 June 2019 (has links)
Ces vingt dernières années, la quantité d’images et de vidéos transmises a augmenté significativement, ce qui est principalement lié à l’essor de Facebook et Netflix. Même si les capacités de transmission s’améliorent, ce nombre croissant d’images et de vidéos transmises exige des méthodes de compression plus efficaces. Cette thèse a pour but d’améliorer par l’apprentissage deux composants clés des standards modernes de compression d’image, à savoir la transformée et la prédiction intra. Plus précisément, des réseaux de neurones profonds sont employés car ils ont un grand pouvoir d’approximation, ce qui est nécessaire pour apprendre une approximation fidèle d’une transformée optimale (ou d’un filtre de prédiction intra optimal) appliqué à des pixels d’image. En ce qui concerne l’apprentissage d’une transformée pour la compression d’image via des réseaux de neurones, un défi est d’apprendre une transformée unique qui est efficace en termes de compromis débit-distorsion, à différents débits. C’est pourquoi deux approches sont proposées pour relever ce défi. Dans la première approche, l’architecture du réseau de neurones impose une contrainte de parcimonie sur les coefficients transformés. Le niveau de parcimonie offre un contrôle sur le taux de compression. Afin d’adapter la transformée à différents taux de compression, le niveau de parcimonie est stochastique pendant la phase d’apprentissage. Dans la deuxième approche, l’efficacité en termes de compromis débit-distorsion est obtenue en minimisant une fonction de débit-distorsion pendant la phase d’apprentissage. Pendant la phase de test, les pas de quantification sont progressivement agrandis selon un schéma afin de compresser à différents débits avec une unique transformée apprise. Concernant l’apprentissage d’un filtre de prédiction intra pour la compression d’image via des réseaux de neurones, le problème est d’obtenir un filtre appris qui s’adapte à la taille du bloc d’image à prédire, à l’information manquante dans le contexte de prédiction et au bruit de quantification variable dans ce contexte. Un ensemble de réseaux de neurones est conçu et entraîné de façon à ce que le filtre appris soit adaptatif à ces égards. / Over the last twenty years, the amount of transmitted images and videos has increased noticeably, mainly urged on by Facebook and Netflix. Even though broadcast capacities improve, this growing amount of transmitted images and videos requires increasingly efficient compression methods. This thesis aims at improving via learning two critical components of the modern image compression standards, which are the transform and the intra prediction. More precisely, deep neural networks are used for this task as they exhibit high power of approximation, which is needed for learning a reliable approximation of an optimal transform (or an optimal intra prediction filter) applied to image pixels. Regarding the learning of a transform for image compression via neural networks, a challenge is to learn an unique transform that is efficient in terms of rate-distortion while keeping this efficiency when compressing at different rates. That is why two approaches are proposed to take on this challenge. In the first approach, the neural network architecture sets a sparsity on the transform coefficients. The level of sparsity gives a direct control over the compression rate. To force the transform to adapt to different compression rates, the level of sparsity is stochastically driven during the training phase. In the second approach, the rate-distortion efficiency is obtained by minimizing a rate-distortion objective function during the training phase. During the test phase, the quantization step sizes are gradually increased according a scheduling to compress at different rates using the single learned transform. Regarding the learning of an intra prediction filter for image compression via neural networks, the issue is to obtain a learned filter that is adaptive with respect to the size of the image block to be predicted, with respect to missing information in the context of prediction, and with respect to the variable quantization noise in this context. A set of neural networks is designed and trained so that the learned prediction filter has this adaptibility.
16

Reconnaissance visuelle robuste par réseaux de neurones dans des scénarios d'exploration robotique. Détecte-moi si tu peux ! / Robust visual recognition by neural networks in robotic exploration scenarios. Detect me if you can!

Guerry, Joris 20 November 2017 (has links)
L'objectif principal ce travail de thèse est la reconnaissance visuelle pour un robot mobile dans des conditions difficiles. En particulier nous nous intéressons aux réseaux de neurones qui présentent aujourd'hui les meilleures performances en vision par ordinateur. Nous avons étudié le principe de sélection de méthodes pour la classification d'images 2D en utilisant un réseau de neurones sélecteur pour choisir le meilleur classifieur disponible étant donnée la situation observée. Cette stratégie fonctionne lorsque les données peuvent être facilement partitionnées vis-à-vis des classifieurs disponibles, ce qui est le cas quand des modalités complémentaires sont utilisées. Nous avons donc utilisé des données RGB-D (2.5D) en particulier appliquées à la détection de personnes. Nous proposons une combinaison de réseaux de neurones détecteurs indépendants propres à chaque modalité (couleur & carte de profondeur) basés sur une même architecture (le Faster RCNN). Nous partageons des résultats intermédiaires des détecteurs pour leur permettre de se compléter et d'améliorer la performance globale en situation difficile (perte de luminosité ou bruit d'acquisition de la carte de profondeur). Nous établissons un nouvel état de l'art dans le domaine et proposons un jeu de données plus complexe et plus riche à la communauté (ONERA.ROOM). Enfin, nous avons fait usage de l'information 3D contenue dans les images RGB-D au travers d'une méthode multi-vue. Nous avons défini une stratégie de génération de vues virtuelles 2D cohérentes avec la structure 3D. Pour une tâche de segmentation sémantique, cette approche permet d'augmenter artificiellement les données d'entraînement pour chaque image RGB-D et d'accumuler différentes prédictions lors du test. Nous obtenons de nouveaux résultats de référence sur les jeux de données SUNRGBD et NYUDv2. Ces travaux de thèse nous ont permis d'aborder de façon originale des données robotiques 2D, 2.5D et 3D avec des réseaux de neurones. Que ce soit pour la classification, la détection et la segmentation sémantique, nous avons non seulement validé nos approches sur des jeux de données difficiles, mais également amené l'état de l'art à un nouveau niveau de performance. / The main objective of this thesis is visual recognition for a mobile robot in difficult conditions. We are particularly interested in neural networks which present today the best performances in computer vision. We studied the concept of method selection for the classification of 2D images by using a neural network selector to choose the best available classifier given the observed situation. This strategy works when data can be easily partitioned with respect to available classifiers, which is the case when complementary modalities are used. We have therefore used RGB-D data (2.5D) in particular applied to people detection. We propose a combination of independent neural network detectors specific to each modality (color & depth map) based on the same architecture (Faster RCNN). We share intermediate results of the detectors to allow them to complement and improve overall performance in difficult situations (luminosity loss or acquisition noise of the depth map). We are establishing new state of the art scores in the field and propose a more complex and richer data set to the community (ONERA.ROOM). Finally, we made use of the 3D information contained in the RGB-D images through a multi-view method. We have defined a strategy for generating 2D virtual views that are consistent with the 3D structure. For a semantic segmentation task, this approach artificially increases the training data for each RGB-D image and accumulates different predictions during the test. We obtain new reference results on the SUNRGBD and NYUDv2 datasets. All these works allowed us to handle in an original way 2D, 2.5D and 3D robotic data with neural networks. Whether for classification, detection and semantic segmentation, we not only validated our approaches on difficult data sets, but also brought the state of the art to a new level of performance.
17

L'expérience de persistance à l'allaitement maternel de femmes primipares, francophones et québécoises

Allard, Manon January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
18

Extraction automatique par apprentissage profond des obstacles et des facilitateurs à la mobilité des personnes à mobilité réduite à partir des données LiDAR mobile

Ghodhbane, Sarra 03 January 2022 (has links)
La mobilité est une habitude de vie fondamentale pour la participation sociale des personnes à mobilité réduite (PMRs). L'un des plus grands défis des PMRs est de trouver des itinéraires accessibles pour leur déplacement en ville. À cet égard, plusieurs groupes de recherche, dont MobiliSIG, s'intéressent à l'évaluation de l'accessibilité des lieux en appui au développement des outils d'assistance à la mobilité des PMRs. Cependant, les méthodes traditionnelles de l'acquisition et le traitement de données pertinentes pour l'analyse de l'accessibilité de l'environnement urbain sont généralement peu précises, peu efficaces et très coûteuses en temps et en argent. Dans ce contexte, la technologie lidar présente une alternative intéressante pour l'acquisition de données très détaillées et précises sur l'environnement urbain. De plus, les techniques issues de l'intelligence artificielle ont démontré de grands potentiels pour l'extraction automatique de l'information pertinente à partir de nuages de points lidar. À cet effet, l'objectif global de cette recherche est d'évaluer le potentiel des nouvelles approches basées sur l'apprentissage profond pour la segmentation sémantique de nuages de points lidar afin d'automatiser l'extraction des obstacles et des facilitateurs (trottoirs, ilots de refuge, marches, etc.) en lien avec la mobilité des PMRs. Pour ce faire, nous nous sommes particulièrement intéressés au potentiel des méthodes d'apprentissage profond telles que les algorithmes de Superpoint graph et FKAconv. Les principales étapes de cette recherche consistent à : 1) élaborer une base de données 3D annotée dédiée à la mobilité des PMRs, 2) appliquer et évaluer les algorithmes de l'apprentissage profond, 3) mettre en évidence les défis rencontrés dans l'apprentissage sémantique en 3D à partir de données lidar mobile (données irrégulières et volumineuses, la complexité des scènes urbaines, morphologie très variable des instances, etc.). Les algorithmes visés sont appliqués aux données lidar mobile pour analyser l'accès aux commerces au centre-ville de Québec. Les résultats de cette recherche ont démontré le potentiel des méthodes d'apprentissage profond pour la segmentation sémantique des éléments pertinents à la mobilité des PMRs à partir des données lidar mobile. Cependant, ces méthodes souffrent de plusieurs problèmes qui engendrent de mauvaises classifications menant à des imperfections de segmentation. / Mobility is a fundamental life habit for the social participation of people with motor disabilities (PMD). One of the biggest challenges for PMDs is to find accessible itineraries for their movement in the city. In this respect, several research groups, including MobiliSIG, are interested in assessing the accessibility of places to support the development of mobility assistance tools for PMDs. However, traditional methods for acquiring and processing data relevant to the analysis of the accessibility of the urban environments are generally inefficient and very costly in terms of time and money. In this context, the lidar technology presents an interesting alternative for the acquisition of very detailed and accurate data on the urban environment. Moreover, artificial intelligence techniques have shown great potential for the automatic extraction of relevant information from lidar point clouds. To this end, the overall objective of this research is to evaluate the potential of new deep learning-based approaches for the semantic segmentation of lidar point clouds to automate the extraction of obstacles and facilitators (sidewalks, island, steps, etc.) related to the mobility of PMDs. To do so, we were particularly interested in the potential of deep learning methods such as Superpoint graph and FKAconv algorithms. The main steps of this research are: 1) to develop an annotated 3D database dedicated to mobility setoff PMDs, 2) to apply and evaluate the deep learning algorithms, 3) to highlight the challenges encountered in 3D semantic learning (irregular and voluminous data, complexity of urban scenes, highly variable morphology of instances, etc.). The selected algorithms are applied to mobile lidar data to analyze access to shops in downtown Quebec City. The results of this research have demonstrated the potential of deep learning methods for semantic segmentation of elements relevant to PRM mobility from mobile lidar data. However, these methods still suffer from several problems that lead to misclassifications leading to segmentation imperfections.
19

Deep representation learning for visual place recognition

Ali-bey, Amar 22 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles / La navigation autonome a une longue histoire dans la recherche en robotique et attire de plus en plus l'attention de chercheurs et industriels. Actuellement, les véhicules autonomes dépendent largement du Système de Positionnement Global (GPS) pour la localisation. Toutefois, les lacunes du GPS dans les environnements urbains et souterrains rendent la localisation basée sur la vision une alternative intéressante. Cette dernière peut être réalisée au moyen de la Reconnaissance Visuelle de Lieux (RVL). Sujet qui sera traité en profondeur dans cette thèse. La Reconnaissance Visuelle de Lieu est la méthode par laquelle un système identifie un emplacement représenté dans une image requête en la comparant à une base de données préexistante correspondant à des lieux connus. Les techniques traditionnelles de reconnaissance visuelle reposent souvent sur des descripteurs de caractéristiques locales ou globales élaborés à la main, ce qui présente des difficultés inhérentes qui compliquent leur application à grande échelle. L'avènement des réseaux de neurones profonds a montré un potentiel significatif pour améliorer les capacités des méthodes de RVL. Ces réseaux nécessitent de grands ensembles de données pour l'entraînement et des fonctions de perte spécialisées pour l'apprentissage des paramètres, ouvrant ainsi de nouvelles voies pour la recherche et l'innovation dans ce domaine. Cette thèse propose une étude exhaustive de l'apprentissage profond pour la RVL. Elle se concentre sur trois composantes principales : l'ensemble de données d'entraînement, l'architecture du réseau de neurones et le processus d'apprentissage de paramètres. Tout d'abord, un ensemble de données à grande échelle composé de 560 000 images à travers 67 000 lieux, appelé GSV-Cities, est présenté. Cette base de données permet de relever les défis associés à la supervision faible qui entrave les méthodes existantes, ce qui se traduit par une amélioration des performances et une réduction significative du temps d'entraînement. De plus, l'importance des fonctions de perte issues de l'apprentissage de similarité est illustrée, particulièrement lorsqu'elles sont employées avec les étiquettes de haute précision fournies par GSV-Cities. S'ensuit MixVPR, une architecture d'aggrégation basée entièrement sur les perceptrons multicouches. Cette architecture surpasse les méthodes de RVL les plus avancées, et ce, sur plusieurs benchmarks, tant en termes de performances de reconnaissance qu'en efficacité de calcul. Finalement, une nouvelle technique de formation de batches est présentée. Elle s'appuie sur des descripteurs compacts pour échantillonner efficacement des mini-batches hautement informatifs à chaque itération d'entraînement. Cette méthode maintient un niveau élevé de paires et de triplets informatifs tout au long de la phase d'apprentissage, conduisant à une amélioration significative des performances globales. Collectivement, les contributions apportées par cette thèse contribuent à l'avancement de l'état de l'art en matière de reconnaissance visuelle de lieux, et établissent une base solide pour la recherche et le développement futurs dans ce domaine. / Autonomous navigation has a long history in robotics research and has recently attracted a lot of attention from researchers and industrials. Currently, autonomous vehicles depend largely on the Global Positioning System (GPS) for localization, whose limitations in urban and subterrenean settings make vision-based localization an attractive alternative. This can be done by means of Visual Place Recognition (VPR), which is addressed in depth in this thesis. Visual Place Recognition (VPR) is the method by which a system identifies a location depicted in a query image by comparing it to a pre-existing database of visual information corresponding to known locations. Traditional VPR techniques often rely on hand-crafted local or global feature descriptors, which present inherent challenges that complicate their application in large-scale settings. The emergence of deep neural networks has shown significant promise in advancing VPR methods capabilities. Such networks require extensive datasets for training and specialized loss functions for parameter learnin. This opens new avenues for research and innovation in the field of VPR. First, GSV-Cities, a large-scale dataset comprised of 560,000 images across 67,000 places, is introduced. This dataset alleviates the challenge of weak supervision that constrains current methods, leading to improved performance and significantly reduction in training time. The importance of similarity learning loss functions, especially when paired with the accurate labels of GSV-Cities, is also highlighted. Second, MixVPR, a new aggregation technique is presented. It outperforms existing state-of-the-art VPR methods on multiple benchmarks, not just in terms of accuracy but also in computational efficiency. Lastly, a novel batch formation technique is introduced, which utilizes compact proxy descriptors for the efficient sampling of highly informative mini-batches at each training iteration. This method maintains a high level of informative pairs and triplets throughout the training phase, leading to a substantial improvement in overall performance. Collectively, the contributions of this thesis serve to advance the current state-of-the-art in Visual Place Recognition (VPR), and establish a strong foundation for future research.
20

Deep learning for object detection in robotic grasping contexts

Mercier, Jean-Philippe 12 August 2021 (has links)
Dans la dernière décennie, les approches basées sur les réseaux de neurones convolutionnels sont devenus les standards pour la plupart des tâches en vision numérique. Alors qu'une grande partie des méthodes classiques de vision étaient basées sur des règles et algorithmes, les réseaux de neurones sont optimisés directement à partir de données d'entraînement qui sont étiquetées pour la tâche voulue. En pratique, il peut être difficile d'obtenir une quantité su sante de données d'entraînement ou d'interpréter les prédictions faites par les réseaux. Également, le processus d'entraînement doit être recommencé pour chaque nouvelle tâche ou ensemble d'objets. Au final, bien que très performantes, les solutions basées sur des réseaux de neurones peuvent être difficiles à mettre en place. Dans cette thèse, nous proposons des stratégies visant à contourner ou solutionner en partie ces limitations en contexte de détection d'instances d'objets. Premièrement, nous proposons d'utiliser une approche en cascade consistant à utiliser un réseau de neurone comme pré-filtrage d'une méthode standard de "template matching". Cette façon de faire nous permet d'améliorer les performances de la méthode de "template matching" tout en gardant son interprétabilité. Deuxièmement, nous proposons une autre approche en cascade. Dans ce cas, nous proposons d'utiliser un réseau faiblement supervisé pour générer des images de probabilité afin d'inférer la position de chaque objet. Cela permet de simplifier le processus d'entraînement et diminuer le nombre d'images d'entraînement nécessaires pour obtenir de bonnes performances. Finalement, nous proposons une architecture de réseau de neurones ainsi qu'une procédure d'entraînement permettant de généraliser un détecteur d'objets à des objets qui ne sont pas vus par le réseau lors de l'entraînement. Notre approche supprime donc la nécessité de réentraîner le réseau de neurones pour chaque nouvel objet. / In the last decade, deep convolutional neural networks became a standard for computer vision applications. As opposed to classical methods which are based on rules and hand-designed features, neural networks are optimized and learned directly from a set of labeled training data specific for a given task. In practice, both obtaining sufficient labeled training data and interpreting network outputs can be problematic. Additionnally, a neural network has to be retrained for new tasks or new sets of objects. Overall, while they perform really well, deployment of deep neural network approaches can be challenging. In this thesis, we propose strategies aiming at solving or getting around these limitations for object detection. First, we propose a cascade approach in which a neural network is used as a prefilter to a template matching approach, allowing an increased performance while keeping the interpretability of the matching method. Secondly, we propose another cascade approach in which a weakly-supervised network generates object-specific heatmaps that can be used to infer their position in an image. This approach simplifies the training process and decreases the number of required training images to get state-of-the-art performances. Finally, we propose a neural network architecture and a training procedure allowing detection of objects that were not seen during training, thus removing the need to retrain networks for new objects.

Page generated in 0.0203 seconds