• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 13
  • 8
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 129
  • 34
  • 19
  • 18
  • 16
  • 16
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Role of the Cytosolic Chaperonin CCT in Folding β-Propeller Proteins

Ludlam, William Grant 14 June 2021 (has links)
Many Proteins require the aid of molecular chaperones to achieve a stable folding state and avoid misfolding pathologies. A major eukaryotic chaperone is the cytosolic chaperonin CCT. While CCT is known to fold a significant portion of all cytosolic proteins, there is no general model for the mechanism CCT uses to fold substrate proteins. One class of proteins that CCT is known to fold are β-propeller containing proteins. Here, we present structural and biochemical data on the processes that CCT uses to fold three distinct β-propeller proteins: the G-protein Beta 5 (Gβ5) subunit of the Gβ5-RGS complex, mLST8 of the mTOR complexes, and BBS2, 7, and 9 of the BBSome. We also explore the mechanisms by which these proteins are assembled into their respective signaling complexes after being folded by CCT. We found that each CCT substrate follows a unique folding trajectory and posit that the major determinants underlying each trajectory are governed by interactions between the substrate and CCT and interactions with downstream binding partners.
72

Distributed Electric Propulsion Conceptual Design Applied to Traditional Aircraft Take Off Distance Through Multidisciplinary Design

Moore, Kevin Ray 23 November 2018 (has links)
While vertical takeoff and landing aircraft show promise for urban air transport, distributed electric propulsion on existing aircraft may offer an immediately implementable alternative. Dis- tributed electric propulsion has the potential of increasing the aircraft thrust-to-weight ratio and lift coefficient high enough to enable takeoff distances of less than 100 meters. While fuel based propulsion technologies generally increase in specific power with increasing size, electric propul- sion typically can be decreased in size without a decrease in specific power. The smaller but highly power-dense propulsion units enable alternative designs including many small units, optionally powered units, and vectored thrust from the propulsion units, which can all contribute to better runway performance, decreased noise, adequate cruise speed, and adequate range. This concep- tual study explores a retrofit of continuously powered, invariant along the wingspan, open bladed electric propulsion units. To model and explore the design space we used a set of validated models including a blade element momentum method, a vortex lattice method, linear beam finite element analysis, classical laminate theory, composite failure, empirically-based blade noise modeling, mo- tor mass and motor controller empirical mass models, and nonlinear gradient-based optimization. We found that while satisfying aerodynamic, aerostructural, noise, and system constraints, a fully blown wing with 16 propellers could reduce the takeoff distance by over 50% when compared to the optimal 2 propeller case. This resulted in a conceptual minimum takeoff distance of 20.5 meters to clear a 50 ft (15.24 m) obstacle. We also found that when decreasing the allowable noise to 60 dBa, the fully blown 8 propeller case performed the best with a 43% reduction in takeoff distance compared to the optimal 2 propeller case. This resulted in a noise-restricted conceptual minimum takeoff distance of 95 meters.Takeoff distances of this length could open up thousands of potential urban runway locations to make a retrofit distributed electric aircraft an immediately implementable solution to the urban air transport challenge.
73

Computational Investigation of the Effects of Rotor-on-Rotor Interactions on Thrust and Noise

Schenk, Austin R 10 June 2020 (has links)
Recent advancements in electric propulsion systems have made electric vertical takeoff and landing aircraft a reality, and one that is seen as a partial solution to the growing issue of urban traffic congestion. Designing an aircraft with multiple smaller motors and rotors spread across the wings–referred to as distributed electric propulsion (DEP)–has shown great potential in help- ing improve electric aircraft performance by offering increased propulsive efficiency, augmented lift, and structural load distribution. For these reasons, DEP is one configuration that is currently being implemented into multiple prototype designs (e.g. NASA’s Maxwell X-57, Airbus Vahana, Opener BlackFly, and Joby S2). However, while a DEP configuration has many potential benefits, it complicates the aerodynamics by introducing complex rotor-on-rotor interactions which can significantly affect noise generation. In this study we use unsteady Reynolds-averaged Navier–Stokes (RANS) simulations (STAR-CCM+) with an aeroacoustic solver (PSU-WOPWOP) to quantify thrust fluctuations and noise generation for two distinct rotor-rotor configurations. The configurations investigated in this study are: 1) coplanar rotors with a varying tip separation distance and 2) one rotor downstream of the other at varying distances for a fixed tip separation distance. Both configurations are investigated using an APC 10x7E and DJI-based 0.24 m rotor. It was found that tip-to-tip separation distance has a stronger influence on noise generation than the downstream separation distance does. A one diameter change in tip separation distance resulted in a ∼15 dBA change in noise while a three diameter change in downstream separation distance only resulted in a ∼9 dBA change in noise for the same rotor. Changes in thrust fluctuations were found to predict trends in noise generation well for multi-rotor configurations. Additionally, it was shown that when rotors are located less than 10% of the diameter apart from each other, noise can be decreased by up to 9 dBA by moving one rotor ∼0.5 diameter downstream of the other.
74

Computational Studies of Magnetic and Low Dimensional Systems

Rojas Solorzano, Tomas January 2019 (has links)
No description available.
75

Changes in Propeller Performance Due to Ground and Partial Ground Proximity

Cai, Jielong 15 June 2020 (has links)
No description available.
76

Electrical Propulsion System Design of a Blended Wing Body UAV

Azad, Kevin, Fungula, Felix January 2022 (has links)
The conventional tube-and-wing aircraft has been around since the 1950s, with little to no innovative progress being made towards redesigning the conventional aircraft. The blended wing body (BWB) shape fuses the wing of the aircraft with the fuselage increasing structural strength while also increasing potential surface area to create lift, making it more efficient than conventional wing shapes. Today aviation has a 2 % CO2 contribution to global emissions. Aircraft manufacturers are predicting a steady rise for the aviation industry. The contribution of green-house gases is set to increase exponentially. Hydrogen fuel cells could deem a good fit between traditional combustion engine aircraft and electrical aircraft having a high efficiency but also being fuel-based. This report investigates the possibility of a prototype model of the Project ''Green Raven'' from KTH of creating a hybrid fuel cell BWB UAV with a 4 m wingspan. The analytical data is from literature and available benchmark data. First, an electrically driven subscale prototype is made and tested, and then the full-scale model is made. The prototype is pro-posed to be driven by a single two-bladed propeller with 10 x 4.7-inch dimensions running at 10000-13000 rpm with a takeoff weight of 4 kg, where 0.75 kg of the weight was from 5 Li-Po batteries. Performance parameters were calculated by given data with a given cruise speed of 30 m/s and a cruise endurance of 1 hour. The prototype will fly for close to maximum load at climb with an angle of 6°. With the Li-Po batteries with a total of 11 Ah, the aircraft has more than 10 % to spare for safety reasons.
77

Development of a Control System and Microcontroller Implementation for an Advanced Rotor Technology Demonstrator

Saroleeya, Jeemeet 30 October 2023 (has links)
The original idea of the thesis was realized to control the electric drive of the rotor with a special feature. Without using a complex mechanism, the angle of each blade of the rotor can be controlled individually. The blades are fixed independently to a permanent magnet and the housing encompassing the rotor contains coils. By powering the coils, the whole rotor turns into a permanent magnet motor and by using a control algorithm, each blade can be separately driven. In the first chapter, the introduction to the main idea of the research project is described along with working principle of rotor blade. The basic concept of blade angle is introduced. The second chapter is the state of Technique. In this chapter, the working principle and basics of permanent magnet synchronous machine and brushless motor with mathematical model is described. Also, space vector pulse width modulation and double acting piezoelectric actuator model for helicopter rotor are explained. The third chapter is the overall description of the initial status of the research project. This part includes the basic principle of the control system, sensorless field-oriented control of Permanent Magnet Synchronous Machine (PMSM). Also, the motor parameters calculated from the python script of motor design are listed in tabular form. The fourth chapter focuses on control strategy implementation. First of all, the criteria for selecting the microcontroller are described. After that, the structure of the program with a flow chart was explained. Also, a short description is mentioned of how space vector pulse width modulation is applied. The main function of the position and speed controller with block diagram is explained. Moreover, back-EMF based observer and EKF-based observer are described. In the fourth chapter, the initial problem of the research project is discussed. To overcome this problem, a set of experiments is carried out. In the last chapter, the result of the experiment with proper explanation is summarized. Further on the future work to solve the problem is listed.
78

Propulsion modelling of a generic submarine propeller

Boman, Gustav January 2023 (has links)
Self propulsion modelling is important in order to accurately simulate ships and submarinesusing Computational Fluid Dynamics (CFD). However, fully resolved simulations of hull andpropeller geometries are computationally heavy and time consuming. As such there is a greatinterest in lower order CFD models of propellers. This work investigates three lower ordermodels of a non-cavitating generic submarine propeller (INSEAN E1619) in OpenFOAM. Themodels investigated are Actuator Disk (AD). Rotor Disk (RD) and Actuator Line Model (ALM).The AD model applies a momentum change based on propeller performance coefficients overa disc cell set. The RD uses Blade Element Method (BEM) to calculate a more realistic thrustdistribution over the disk. Finally the ALM applies BEM over seven rotating lines within the cellset disc. The source code to the RD model was modified according to suggestions provided fromearlier studies on the model. The ALM used was originally designed for turbines which wasrectified by changing the force projection vectors in the source code to model propellers instead.There was not enough published data to directly utilize BEM on the E1619 propeller, thus thedata was generated by conducting 2D simulations on every element. The simulations were setup to replicate results provided in earlier works with higher order models in order to compareboth quantitative and qualitative results. It was found the ALM matched the reference databest out of the models tested in this work. The RD was qualitatively similar to the time averageof the ALM fields but numerically inaccurate. The AD results were poor, both quantitativelyand qualitatively.
79

Investigating Ground Interactions of a Rotocraft Landing Vehicle on Titan

Rozman, Adam 01 January 2022 (has links)
The exploration of celestial bodies has recently advanced from rovers to rotorcraft. This includes the recent flights of Mars Ingenuity and the upcoming Dragonfly mission to explore the terrain of Saturn’s moon Titan as part of NASA’s New Frontiers Program. Flight-based landers can travel quickly to sites kilometers apart and land in complex terrain. Although cruise conditions for these rotorcrafts are well understood, studies are necessary to understand take-off and landing. In ground effect conditions, a rotor wake impinges and reflects off the ground, creating changes in aerodynamics such as increased lift. Additionally, operating over loose surfaces, the rotors can create clouds of dust obscuring the vehicle’s sensors, a hazard termed “brownout” from rotorcraft landing in sandy and snowy conditions on Earth. Take-off and landing events involve interactions between the rotor wake, fuselage, and ground, and lead to a multi-phase interface between the fluid atmosphere and the dispersed dust particles. The objective of this study is to computationally model and evaluate ground effect aerodynamic forces on the Dragonfly rotorcraft lander. A calculation of sediment distribution across the surface of the vehicle will provide insight to which components might be most affected by brownout.
80

AUTONOMOUS UAV HEALTH MONITORING AND FAILURE DETECTION BASED ON VIBRATION SIGNALS

Cabahug, James 01 August 2022 (has links)
Unmanned Aerial Vehicles (UAVs) are quite successful in maintaining steady flight operations, but propeller failure that exists causes them to experience a possible crash. The objective of this thesis project is to propose a UAV failure detection model as part of the developing framework of an autonomous emergency landing system for UAVs. Health monitoring is integrated where the quadcopter is flown for three cases of propeller faults. Vibration signals are measured during each flight, where a hardware system is designed with Arduino Uno and an Inertial Measurement Unit (IMU) sensor that contains a 3-axis accelerometer and a 3-axis gyroscope, and vibration graphs are made. Once the data is extracted, different parameters (aX, aY, aZ, gX, gY, and gZ) are selected with dimension n ∈ {1,2,3,4,5,6}, and 750 data points are chosen for the K-Means Clustering algorithm. Quadcopter Failure Detection Cluster (QFDC) plots and confusion matrices are created, and three different health states are classified as clusters – normal state, faulty state, and failure state. The parameter set gZ-aZ has the best performance metrics with an accuracy of 92.1%, which is chosen for the decision-making step that involves a Light Emitting Diode (LED) subsystem. Boundary conditions are set from the gZ-aZ QFDC plot where three LEDs turn on based on the specified health state to validate the model. The accuracies of the LED system range between 89% and 95%. Successful failure detection for UAVs would make UAVs safer and more reliable to fly with less imposed restrictions.

Page generated in 0.0464 seconds