Spelling suggestions: "subject:"eroperty desting"" "subject:"eroperty ingesting""
1 |
Algorithms and lower bounds for testing properties of structured distributionsNikishkin, Vladimir January 2016 (has links)
In this doctoral thesis we consider various property testing problems for structured distributions. A distribution is said to be structured if it belongs to a certain class which can be simply described in approximation terms. Such distributions often arise in practice, e.g. log-concave distributions, easily approximated by polynomials (see [Bir87a]), often appear in econometric research. For structured distributions, testing a property often requires far less samples than for general unrestricted distributions. In this thesis we prove that this is indeed the case for several distance-related properties. Namely, we give explicit sub-linear time algorithms for L1 and L2 distance testing between two structured distributions for the cases when either one or both of them are available as a “black box”. We also prove that the given algorithms have the best possible asymptotic complexity by proving matching lower bounds in the form of explicit problem instances (albeit constructed using randomized techniques) demanding at least a specified amount of data to be tested successfully. As the main numerical result, we prove that testing that total variation distance to an explicitly given distribution is at least e requires O(√k/e²) samples, where k is an approximation parameter, dependent on the class of distribution being tested and independent of the support size. Testing that the total variation distance between two “black box” distributions is at least e requires O(k⁴/⁵e⁶/⁵). In some cases, when k ~ n, this result may be worse than using an unrestricted testing algorithm (which requires O( n²/3/e² ) samples where n is the domain size). To address this issue, we develop a third algorithm, which requires O(k²/³e⁴/³ log⁴/³(n/k) log log(n/k)) and serves as a bridge between the cases of small and large domain sizes.
|
2 |
Improved algorithms and new models in property testingPallavoor Suresh, Ramesh Krishnan 11 February 2021 (has links)
We study sublinear-time algorithms for testing fundamental properties of functions and graphs. Sublinear-time algorithms run in time sublinear in the input size and are especially useful for processing massive datasets. We investigate variants of the property testing model, which was introduced by Rubinfeld and Sudan (SIAM J. Comput., 1996) and Goldreich, Goldwasser and Ron (J. ACM, 1998) to formally study sublinear-time algorithms. The focus of this thesis is on designing better property testers, deepening our understanding of their limitations, and proposing new angles for investigating sublinear-time algorithms.
First, we study the problem of testing unateness of real-valued functions over high-dimensional domains. A function over a multi-dimensional domain is unate if, along each dimension, the function is either nonincreasing or nondecreasing. We give efficient unateness testers and prove that they are optimal.
We then focus on testing monotonicity of functions when the input functions are partially corrupted or partially erased. We prove that, for some settings of parameters, testing monotonicity of functions with corrupted or erased values is exponentially harder than testing monotonicity of functions with neither corruptions nor erasures.
We then investigate the parameters in terms of which the complexity of property testers should be expressed. The complexity of algorithms and, in particular, property testers is usually expressed in terms of the size of the input. We prove that certain parameters capture the complexity of testing problems better than the input size, providing compelling evidence that the input size may not always be the best parameter to express the complexity of sublinear-time algorithms.
Finally, we turn our attention towards testing properties of graphs. We first provide an algorithm for testing connectedness of graphs and prove that it is optimal. We then define a new model for studying graphs with missing information and investigate the problems of testing connectedness and estimating the average degree of graphs in the new model.
|
3 |
Approximate membership for words and trees / Appartenance approchée à un langage de mots ou d’arbresNdione, Antoine Mbaye 16 April 2014 (has links)
L’objectif de cette thèse est d’obtenir des algorithmes sous linéaire permettant de répondre à des problèmes de décision dans les bases de données XML. Plus précisément, on s’inspire du property testing, pour décider approximativement si un arbre d’arité non bornée est valide par rapport à une DTD ; ou plus généralement si un tel arbre est reconnu par un automate d’arbre.Nous avons d’abord étudié le cas simple des mots, c’est-à-dire l’appartenance approchée d’un mot à un langage régulier défini par un automate non-déterministe. Sous la distance d’édition entres les mots, nous proposons un algorithme (ou tester) résolvant l’appartenance approchée en un temps polynomial : en la taille de l’automate aussi bien qu’en la précision (où le paramètre d’erreur). Nous avons aussi amélioré le précédent algorithme d’Alon, Krivelevich, Newman, et Szegedy, (2000) pour l’approximation de l’appartenance à un langage régulier modulo la distance de Hamming. Notre amélioration consiste à rendre cet algorithme polynomial en la taille de l’automate non-déterministe. Ensuite nous avons considéré l’appartenance approchée d’un arbre à un automate d’arbre sous la distance d’édition standard. Notre algorithme résout ce problème avec une complexité en temps exponentielle en la hauteur de l’arbre. Enfin nous avons considéré la validation approchée de DTD par rapport à la « strong edit distance » ; et nous obtenons dans ce cas un algorithme polynomial en la hauteur de l’arbre. Nous complétons nos résultats en prouvant une borne inférieure linéaire en la taille de l’arbre, pour la complexité de tout algorithme décidant l’appartenance approchée d’un arbre à une DTD, sous la strong edit distance. / Inspired by property testing, our objective is to obtain sublinear algorithms for deciding properties of XML databases approximatively. More precisely, we investigate the properties of whether an unranked tree is valid for a DTD, or more generally, whether it is recognized by a tree automaton. We start our studies by the simpler case of words and we considered the approximate membership problem for word non-deterministic automata. For this problem, we provide an efficient tester that runs in polynomial time in the size of the input automata and the error precision. We also improve the previous [Alon, Krivelevich, Newman, and Szegedy, 2000b] approximate membership tester for regular languages modulo the Hamming distance, so that it runs in polynomial time in the size of the input automata. Secondly, we study approximate membership testing for tree automata modulo the standard edit distance, and obtain a tester with run time exponential in the input tree depth. Next we consider approximate DTD validity modulo the strong edit distance. We then provide a tester that depends polynomially on the height of the tree. Finally, modulo the strong edit distance, we prove a linear lower bound on the depth of the input tree.
|
4 |
Teste de propriedades em torneios / Property testing in tournamentsStagni, Henrique 26 January 2015 (has links)
Teste de propriedades em grafos consiste no estudo de algoritmos aleatórios sublineares que determinam se um grafo $G$ de entrada com $n$ vértices satisfaz uma dada propriedade ou se é necessário adicionar ou remover mais do que $\\epsilon{n \\choose 2}$ arestas para fazer $G$ satisfazê-la, para algum parâmetro $\\epsilon$ de erro fixo. Uma propriedade de grafos $P$ é dita testável se, para todo $\\epsilon > 0$, existe um tal algoritmo para $P$ cujo tempo de execução é independente de $n$. Um dos resultados de maior importância nesta área, provado por Alon e Shapira, afirma que toda propriedade hereditária de grafos é testável. Neste trabalho, apresentamos resultados análogos para torneios --- grafos completos nos quais são dadas orientações para cada aresta. / Graph property testing is the study of randomized sublinear algorithms which decide if an input graph $G$ with $n$ vertices satisfies a given property or if it is necessary to add or remove more than $\\epsilon{n \\choose 2}$ edges to make $G$ satisfy it, for some fixed error parameter $\\epsilon$ . A graph property $P$ is called testable if, for every $\\epsilon > 0$, there is such an algorithm for $P$ whose run time is independent of $n$. One of the most important results in this area is due to Alon and Shapira, who showed that every hereditary graph property is testable. In this work, we show analogous results for tournaments --- complete graphs in which every edge is given an orientation.
|
5 |
Teste de propriedades em torneios / Property testing in tournamentsHenrique Stagni 26 January 2015 (has links)
Teste de propriedades em grafos consiste no estudo de algoritmos aleatórios sublineares que determinam se um grafo $G$ de entrada com $n$ vértices satisfaz uma dada propriedade ou se é necessário adicionar ou remover mais do que $\\epsilon{n \\choose 2}$ arestas para fazer $G$ satisfazê-la, para algum parâmetro $\\epsilon$ de erro fixo. Uma propriedade de grafos $P$ é dita testável se, para todo $\\epsilon > 0$, existe um tal algoritmo para $P$ cujo tempo de execução é independente de $n$. Um dos resultados de maior importância nesta área, provado por Alon e Shapira, afirma que toda propriedade hereditária de grafos é testável. Neste trabalho, apresentamos resultados análogos para torneios --- grafos completos nos quais são dadas orientações para cada aresta. / Graph property testing is the study of randomized sublinear algorithms which decide if an input graph $G$ with $n$ vertices satisfies a given property or if it is necessary to add or remove more than $\\epsilon{n \\choose 2}$ edges to make $G$ satisfy it, for some fixed error parameter $\\epsilon$ . A graph property $P$ is called testable if, for every $\\epsilon > 0$, there is such an algorithm for $P$ whose run time is independent of $n$. One of the most important results in this area is due to Alon and Shapira, who showed that every hereditary graph property is testable. In this work, we show analogous results for tournaments --- complete graphs in which every edge is given an orientation.
|
6 |
Mathematical Theories of Interaction with OraclesYang, Liu 01 October 2013 (has links)
No description available.
|
7 |
Applications des limites de structures combinatoires en géométrie et en théorie des graphes / Applications of limits of combinatorial structures in geometry and graph theoryDe Joannis de Verclos, Rémi 20 July 2018 (has links)
Cette thèse traite de problèmes liés à la théorie des limitesd'objets combinatoires, une récente théorie qui a permis de tisserdes liens entre différents domaines tels que la combinatoire,l'analyse, la géométrie ou la théorie de la probabilité.Cette thèse applique des méthode venant de cette théorie à des problèmesde combinatoire extrémale.Dans un premier chapitre, je développe une théorie des limites d'objetsappelés emph{types d'ordre}, un objets qui encode des configurationsd'ensembles de points du plan. Le type d'ordre d'un ensemble de pointssuffit à caractériser de nombreuses propriétés essentielles de cet ensemblede point comme, par exemple, son enveloppe convexe.Je montre qu'une limite de type d'ordre peut être représentée par un objetanalogue à un graphon à valeurs O ou 1.Je fais ensuite le lien entre limites de type d'ordre et la distributionnaturelle de limite de type d'ordre obtenue par l’échantillonnage de pointsdu plan suivant une certaine probabilité.De cette manière, toute probabilité sur le plan engendre une limite de typed'ordre. Je montre d'une part que cette correspondance n'est pas surjective-c'est à dire qu'il existe des limites de type d'ordre ne venant pas de probabilitédu plan- et j'étudie d'autre part son injectivité.Je montre que si le support d'une mesure de probabilité est assez gros, par exemple siil contient une boule ouvert, alors la limite que cette mesure engendre suffit à caractériser cette mesure à une transformation projective près.Un second chapitre traite de test de propriété.Un testeur de propriété est un algorithme aléatoire permettant de séparerles objets ayant une certaine propriété des objet à distance au moins εde l'avoir, au sens de la distance d'édition.Ce domaine donne des algorithmes extrêmement rapides, et en particulierdes algorithmes dont la complexité ne dépends pas de la taille de l'entréemais seulement du paramètre de précision ε.Un résultat fondamental de cet domaine pour les graphes montré par Alonet Shapira est le suivant : toute classe de graphe héréditaire possède un teltesteur.Cette thèse contribue à la question suivante :Quelles classes de graphes possède un testeur dont la complexité est unpolynôme en 1/ε ?Je montre qu'en particulier la classe des graphes d'intervales possède un teltesteur.La théorie des algèbres de drapeaux est un outil étroitement lié aux limites degraphes denses qui donne une méthode pour démontrer des bornes sur certainsparamètres combinatoires à l'aide d'un ordinateur.Dans un troisième chapitre, je présente un programme écrit durant ma thèsequi implémente cette méthode.Ce programme fonctionne comme une bibliothèque pour calculer dans les algèbresde drapeaux, manipuler des inégalités sur les drapeaux ou encoder des problèmesd'optimisations par une instance de programme semi-défini positif qui peutensuite être résolu par un solveur externe.Ce programme est en particulier utilisé pour obtenir un nouvelle borne pour le cas triangulaire de la conjecture de Caccetta-Häggkvist. / This thesis is focused on problems related to the theory of combinatorial limits.This theory opened links between different fields such asanalysis, combinatorics, geometry and probability theory.In this thesis, we apply ideas coming from this framework toproblems in extremal combinatorics.In a first chapter we develop a theory of limits for emph{order types},a geometrical object that encodes configuration of a set of points in theplane by the mean of the orientations of their triangles.The order type of a point set suffices to determine many of its properties,such as for instance the boundary of its convex hull.We show that the limit of a converging sequence of order typescan be represented by random-free object analogous to a graphon.Further, we link this notion to the natural distributions of order typesarising from the sampling of random points from some probability measureof the plane.We observe that in this mean, every probability measure gives rise to a limitof order types.We show that this map from probability measure on the plane to limit oforder type is not surjective.Concerning its injectivity,we prove that if a measure has large enough support, for instance if its supportcontains an open ball, the limit of order types the measure generatessuffices to essentially determine this measure.A second chapter is focused on property testing.A tester is a randomized algorithm for distinguishing between objects satisfyinga property from those that are at some distance at least εfrom having itby means of the edition distance.This gives very efficient algorithms, and in particular algorithms whosecomplexity does not depend on the size of the input but only on the parameter ε.For graphs, it has been shown by Alon and Shapira that every hereditary propertyhas such a tester.We contribute to the following question :which classes of graphs have a one-sided property tester with a number of queries that is a polynomial in 1/ε ?We give a proof that the class of interval graphs has such a tester.The theory of flag algebras is a framework introduced by Razborovclosely related to dense limit of graphs, that gives a way to systematicallyderive bounds for parameters in extremal combinatorics.In a third chapter we present a program developed during my Phd.that implements this method.This program works as a library that can compute flag algebras,manipulate inequalities on densities and encode the optimization of some parameterin a semi-definite positive instance that can be given to a dedicated solverto obtain a bound on this parameter.This program is in particular used to obtain a new bound forthe triangle case of the Caccetta-Häggkvist conjecture.
|
8 |
Spectral Approach to Modern Algorithm DesignAkash Kumar (8802788) 06 May 2020 (has links)
<div>Spectral Methods have had huge influence of modern algorithm design. For algorithmic problems on graphs, this is done by using a deep connection between random walks and the powers of various natural matrices associated with the graph. The major contribution</div><div>of this thesis initiates attempts to recover algorithmic results in Graph Minor Theory via spectral methods.</div><div><br></div><div>We make progress towards this goal by exploring these questions in the Property Testing Model for bounded degree graphs. Our main contributions are</div><div>1. The first result gives an almost query optimal one-sided tester for the property of H-minor-freeness. Benjamini-Schramm-Shapira (STOC 2008) conjectured that for fixed H, this can be done in time O(sqrt n). Our algorithm solves this in time n^{1/2+o(1)} which nearly resolves this upto n^{o(1)} factors.</div><div><br></div><div>2. BSS also conjectured that in the two-sided model, H-minor-freeness can be tested in time poly(1/eps). We resolve this conjecture in the affirmative.</div><div><br></div><div>3.Lastly, in a previous work on the two-sided-question above, Hassidim-Kelner-Nguyen-Onak (FOCS 2009) introduced a tool they call partition oracle. They conjectured that partition oracles could be implemented in time poly(1/eps) and gave an implementation which took exp(poly(1/eps)) time. In this work, we resolve this conjecture and produce such an oracle.</div><div><br></div><div><br></div><div>Additionally, this work also presents an algorithm which can recover a planted 3-coloring in a graph with some random like properties and suggests some future research directions alongside.</div>
|
9 |
Regular partitions of hypergraphs and property testingSchacht, Mathias 28 October 2010 (has links)
Die Regularitätsmethode für Graphen wurde vor über 30 Jahren von Szemerédi, für den Beweis seines Dichteresultates über Teilmengen der natürlichen Zahlen, welche keine arithmetischen Progressionen enthalten, entwickelt. Grob gesprochen besagt das Regularitätslemma, dass die Knotenmenge eines beliebigen Graphen in konstant viele Klassen so zerlegt werden kann, dass fast alle induzierten bipartiten Graphen quasi-zufällig sind, d.h. sie verhalten sich wie zufällige bipartite Graphen mit derselben Dichte. Das Regularitätslemma hatte viele weitere Anwendungen, vor allem in der extremalen Graphentheorie, aber auch in der theoretischen Informatik und der kombinatorischen Zahlentheorie, und gilt mittlerweile als eines der zentralen Hilfsmittel in der modernen Graphentheorie. Vor wenigen Jahren wurden Regularitätslemmata für andere diskrete Strukturen entwickelt. Insbesondere wurde die Regularitätsmethode für uniforme Hypergraphen und dünne Graphen verallgemeinert. Ziel der vorliegenden Arbeit ist die Weiterentwicklung der Regularitätsmethode und deren Anwendung auf Probleme der theoretischen Informatik. Im Besonderen wird gezeigt, dass vererbbare (entscheidbare) Hypergrapheneigenschaften, das sind Familien von Hypergraphen, welche unter Isomorphie und induzierten Untergraphen abgeschlossen sind, testbar sind. D.h. es existiert ein randomisierter Algorithmus, der in konstanter Laufzeit mit hoher Wahrscheinlichkeit zwischen Hypergraphen, welche solche Eigenschaften haben und solchen die „weit“ davon entfernt sind, unterscheidet. / About 30 years ago Szemerédi developed the regularity method for graphs, which was a key ingredient in the proof of his famous density result concerning the upper density of subsets of the integers which contain no arithmetic progression of fixed length. Roughly speaking, the regularity lemma asserts, that the vertex set of every graph can be partitioned into a constant number of classes such that almost all of the induced bipartite graphs are quasi-random, i.e., they mimic the behavior of random bipartite graphs of the same density. The regularity lemma had have many applications mainly in extremal graph theory, but also in theoretical computer science and additive number theory, and it is considered one of the central tools in modern graph theory. A few years ago the regularity method was extended to other discrete structures. In particular extensions for uniform hypergraphs and sparse graphs were obtained. The main goal of this thesis is the further development of the regularity method and its application to problems in theoretical computer science. In particular, we will show that hereditary, decidable properties of hypergraphs, that are properties closed under isomorphism and vertex removal, are testable. I.e., there exists a randomised algorithm with constant running time, which distinguishes between Hypergraphs displaying the property and those which are “far” from it.
|
10 |
[en] A CHARACTERIZATION OF TESTABLE GRAPH PROPERTIES IN THE DENSE GRAPH MODEL / [pt] UMA CARACTERIZAÇÃO DE PROPRIEDADES TESTÁVEIS NO MODELO DE GRAFOS DENSOSFELIPE DE OLIVEIRA 19 June 2023 (has links)
[pt] Consideramos, nesta dissertação, a questão de determinar se um grafo
tem uma propriedade P, tal como G é livre de triângulos ou G é 4-
colorível. Em particular, consideramos para quais propriedades P existe um
algoritmo aleatório com probabilidades de erro constantes que aceita grafos que
satisfazem P e rejeita grafos que são epsilon-longe de qualquer grafo que o satisfaça.
Se, além disso, o algoritmo tiver complexidade independente do tamanho
do grafo, a propriedade é dita testável. Discutiremos os resultados de Alon,
Fischer, Newman e Shapira que obtiveram uma caracterização combinatória de
propriedades testáveis de grafos, resolvendo um problema em aberto levantado
em 1996. Essa caracterização diz informalmente que uma propriedade P de
um grafo é testável se e somente se testar P pode ser reduzido a testar a
propriedade de satisfazer uma das finitas partições Szemerédi. / [en] We consider, in this thesis, the question of determining if a graph has a
property P such as G is triangle-free or G is 4-colorable. In particular,
we consider for which properties P there exists a random algorithm with
constant error probabilities that accept graphs that satisfy P and reject graphs
that are epsilon-far from any graph that satisfies it. If, in addition, the algorithm
has complexity independent of the size of the graph, the property is called
testable. We will discuss the results of Alon, Fischer, Newman, and Shapira
that obtained a combinatorial characterization of testable graph properties,
solving an open problem raised in 1996. This characterization informally says
that a graph property P is testable if and only if testing P can be reduced to
testing the property of satisfying one of finitely many Szemerédi-partitions.
|
Page generated in 0.1053 seconds