• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la localisation intracellulaire de la protéine core du virus de l’hépatite B humaine et de ses multimères / Study of the localization of intracellular human hepatitis B virus core protein and its multimers

Deroubaix, Aurélie 20 December 2011 (has links)
L’hépatite B, causée par le virus de l’hépatite B (VHB), est responsable d’un à deux millions de morts chaque année dans le monde. Le VHB occasionne des lésions importantes au niveau du foie, pouvant amener à la cirrhose et au carcinome hépatocellulaire. Ce virus, de la famille des hepadnavirus, contient une capside formée de 240 copies d’une même protéine : la protéine core. Des biopsies de patients infectés par le VHB montrent que la protéine de capside se localise soit dans le noyau soit dans le cytoplasme des cellules infectées. On s’accorde à dire qu’une localisation majoritairement cytoplasmique est liée à une aggravation de la maladie. Nous avons observé que, dans des cellules HuH-7, la protéine core seule est nucléaire alors qu’en contexte viral, elle se localise dans le cytoplasme. Après avoir vérifié que nos observations ne sont pas dues aux conditions de culture des cellules, nous avons démontré que la relocalisation de core est due à des facteurs viraux : la polymérase virale grâce à son domaine TP ainsi que la Tige/Boucle  présente sur l’ARN prégénomique. La localisation de core est aussi influencée par l’état de phosphorylation de ses sérines 157, 170 et 172.Ainsi, nous avons pu montrer à quel point le trafic de core était complexe et qu’il était régulé par divers facteurs viraux et cellulaires. Ces travaux permettront une étude plus approfondie des régulations du trafic intracellulaire de la protéine core et ainsi de faire évoluer plus favorablement l’hépatite B chez les patients infectés. / Hepatitis B is a liver inflammation caused by the Hepatitis B virus (HBV). It is responsible of one to two millions deaths per year in the world. HBV is the cause of important liver damages and may lead to cirrhosis and hepatocellular carcinoma.HBV is a member of hepadnaviral family. It has a capsid composed of 240 copies of the same protein: the core protein. In literature, patients’ biopsies showed that capsid is found either in the nucleus or in the cytoplasm or both compartments of hepatocytes. In general, a cytoplasmic localization is related to an advanced state of the disease.In our study, we observed that in HuH-7 cells, core protein alone has a nuclear localization, whereas in viral context it is essentially found in the cytoplasm. We verified that these observations were not due to culture conditions. Then, we demonstrated that the cytoplasmic localization of core was due to viral factors. The viral polymerase is implied by its TP domain. The second component is the viral pregenomic RNA, by its Epsilon stem loop structure. At last, core localization is also influenced by the phosphorylation state of its serines 157, 170 and 172.Thus, we demonstrated that the core protein traffic is very complex and regulated by different viral and cellular factors. This work will further study the regulation of intracellular trafficking of the core protein and allow a better outcome for the infected patients.
2

Production, assembly and solid-state NMR analysis of various hepatitis B virus capsids / Production, assemblage et analyse par RMN à l'état solide de différents formes de la capside du virus de l'hépatite B

Wang, Shishan 26 September 2019 (has links)
L’hépatite B est une maladie du foie qui pose un problème majeur de santé publique. Il n’existe à ce jour aucun traitement permettant de guérir complètement de l’infection, et de nouvelles thérapies ont besoin d’être développées. Étant donné son rôle clé dans le cycle de vie du virus de l’hépatite B (VHB), la protéine core qui forme la capside virale est aujourd’hui l’une des cibles avec le plus grand potentiel thérapeutique. Nos recherches sont focalisées sur la caractérisation des capsides du VHB dans différents états conformationnels en utilisant des techniques de biochimie et de RMN du solide, afin de révéler leur conformation précise sous différentes conditions, incluant l’interaction des capsides avec des antiviraux, et la relation entre la conformation de la capside et la maturation du virus. Un système d’expression bactérienne ainsi qu’un système acellulaire de synthèse de protéine à base de germes de blé ont été établis au laboratoire pour produire les capsides, et des protocoles pour désassembler puis réassembler les capsides en présence de différents types d’ARN ont été implémentés. Des échantillons de capsides formées dans E. coli et réassemblées in vitro ont été analysés par RMN. Les différentes formes de capsides observées incluent les protéines tronquées Cp140 et Cp149, la protéine entière Cp183, phosphorylée P-Cp183, et enfin des mutants. Dans un premier temps, nous avons préparé des échantillons pour l’attribution séquentielle de la protéine core par RMN du solide. L’utilisation de la détection carbone en RMN requiert plusieurs dizaines de milligrammes d’échantillon, qui ont pu être produits en utilisant l’expressions bactérienne en milieu minimum contenant des isotopes marqués. Les attributions séquentielles ont été réalisées sur la protéine tronquée Cp149, qui donne des spectres très similaires à Cp183. Cet échantillon a également été utilisé pour identifier les différences conformationnelles entre les 4 monomères de la capside, qui sont provoquées par la symétrie icosaédrale T=4. Ensuite, l’objet principal de cette thèse a été l’investigation et la comparaison d’une large variété de capsides, dans leur forme autoassemblée dans les bactéries E. coli, ainsi que dans leur forme réassemblée. Pour le réassemblage de la protéine entière, qui requiert la présence d’acides nucléiques, nous avons testé différents types d’ARN y compris l’ARN viral prégénomique. Nous avons étudié différentes symétries (T=3 et T=4), ainsi que les états d’oxydation de la capside, et comparé les différences de conformation grâce aux perturbations de déplacements chimiques observées dans les spectres RMN. Nous avons pu identifier les acides aminés impliqués dans les changements conformationnels majeurs entre les différentes préparations. La RMN du solide en détection proton à 100 kHz a récemment émergé comme un outils important pour l’analyse de protéines produites en quantités moindres. Nous avons appliqué cette stratégie à l’analyse des capsides de Cp149 afin d’obtenir l’attribution des protons amides. La détection proton par RMN du solide peut être combinée avec succès à la synthèse des protéines en système acellulaire, qui donne de faibles rendements par rapport aux cultures en bactéries. Cette approche est particulièrement intéressante pour analyser la modulation de l’assemblage des capsides induite par la présence de drogues. Bien que nous ayons commencé à étudier l’impact de modulateurs d’assemblage par RMN en détection carbone sur des capsides formées dans E. coli et réassemblées (données préliminaires non montrées dans ce manuscrit), la détection proton ouvre la voie vers l’analyse de l’impact de ces modulateurs sur l’assemblage des protéines core directement à la sortie du ribosome / Hepatitis B is a widely spread liver disease which causes a heavy burden for human health, with 257 millions of people affected by chronic infection and about 780,000 deaths per year. Yet, infected patients can not be completely cured by current treatments using notably nucleos(t)ide analogues and interferons. In order to achieve the goal of the World Health Assembly (WHA), who wishes to eliminate hepatitis B by 2030, new therapies need to be developed. Given its critical role for the Hepatitis B virus (HBV) life cycle, the core protein (Cp) is today one of the antiviral targets with the highest potential. Our research focuses on the characterization of HBV capsids in different conformational states using biochemistry and solid-state NMR, aiming at revealing their precise conformation under different conditions, including the interaction of capsids with antivirals, and the correlation between capsid conformation and viral maturation. For sample preparation, both a bacterial expression system and a wheat germ cell-free protein synthesis system have been established in the laboratory to produce HBV capsids, and protocols to disassemble and reassemble capsids with different nucleic acids have been implemented. Both capsids preformed in E. coli and capsids reassembled in vitro were addressed to NMR studies. Different capsids forms include the truncated versions Cp140 and Cp149, the full length protein Cp183, the phosphorylated P-Cp183 and mutant forms. First, we have prepared samples for the sequential assignment of the protein using solid-state NMR. The use of carbon-13 detection asks for several tens of milligrams of sample, which were produced using labeled isotopes and bacterial expression in minimal media. Sequential assignments were performed using the truncated capsid Cp149, which showed highly similar spectra to Cp183. This sample was also used to identify conformational differences between the four different monomers in the capsid, which are due to the T=4 icosahedral symmetry. Then, the main body of the thesis is the investigation and comparison of a variety of different capsid forms, including Cp183, P-Cp183, Cp149, Cp140, another truncated form resulting in mainly T=3 icosahedral assemblies, and Cp140 C61A and Cp183 F97L mutants. We investigated all samples in both the E. coli-produced and reassembled forms, which needs for the full-length protein the presence of nucleic acids, of which we tested several, including the viral pregenomic RNA. We investigated different symmetries, as well as oxidation states of the capsid, and compared the differences via chemical shift perturbations observed in NMR spectra. We reported in a site-specific manner the major conformational changes observed between the different preparations. Proton-detected solid-state NMR at 100 kHz has recently emerged as a tool for analyzing proteins with the need of less sample amount. We have applied this strategy to the analysis of the Cp149 capsids, in order to obtain sequential assignments of the amide proton resonances. For this, deuteration of the protein in bacteria was used as well, needing adaptation of sample preparation protocols. Proton detection can be successfully combined with cell-free protein synthesis, which gives low yields compared to bacterial expression. This approach is of potential interest to analyze capsid assembly modulation induced by the presence of drugs. While we have started in the framework of this thesis to analyze the capsid in presence of different capsid assembly modulators by carbon-13 detected NMR on E. coli and reassembled capsids (preliminary results not reported here), proton detection opens the way to an analysis of the impact of capsid modulation directly on the exit of the core proteins from the ribosome, on assembly. We showed that cell-free expression combined with proton-detection solid-state NMR can be used to analyze capsid chemical shifts, and thus in future work the conformational modulations
3

Etude biochimique et fonctionnelle de la glycoprotéine E1 du virus de l'Hépatite C (HCV) / Biochemical and functional study of Hepatitis C virus glycoprotein E1 (HCV)

Haddad, Juliano 26 September 2017 (has links)
Du fait de leur présence à la surface de la particule virale, les glycoprotéines d’enveloppe E1 et E2 du virus HCV jouent un rôle essentiel dans sa morphogenèse ainsi que lors de son entrée dans la cellule hôte. Jusqu’à récemment, les travaux de recherche sur les glycoprotéines d’enveloppe du virus HCV se sont essentiellement focalisés sur E2 car elle est la protéine d’attachement du virus. De plus, elle est la cible majeure des anticorps neutralisants et il a été longtemps postulé qu’elle était la protéine de fusion du virus. Cependant, les récentes publications de la structure de E2 ne mettent pas en évidence la présence d’un peptide de fusion et sa structure ne correspond pas aux critères attendus pour une protéine de fusion, suggérant que la glycoprotéine E1 seule ou en association avec E2 pourrait être responsable de l’étape de fusion. La structure de la région N-terminale de E1 (acides aminés 192 à 270) a récemment été résolue et a mis en évidence la présence d’une épingle à cheveux formée par 2 feuillets beta (β1 et β2) suivie par un segment de 16 acides aminés qui forme une hélice alpha (α1) flanquant 3 feuillets beta antiparallèles (β3, β4 et β5). En plus de la caractérisation de ces structures secondaires de E1, une région qui se situe au milieu de la protéine (approximativement entre les résidus 274 et 292) a été proposée avoir un rôle actif au cours du processus de fusion et elle pourrait correspondre à un peptide de fusion.Nous nous sommes basés sur ces travaux récents pour investiguer le rôle fonctionnel de la glycoprotéine E1 par une approche de mutagenèse dirigée des résidus conservés dans la région N-terminale et dans la région du potentiel peptide de fusion, dans le contexte d’un clone infectieux du HCV. Comme attendu, nos résultats indiquent que ces mutations introduites dans E1 n’ont aucun effet sur la réplication virale. Cependant, vingt-et-un parmi les vingt-huit mutants produits conduisent à une atténuation ou une perte de l’infectiosité virale. D’une manière très intéressante, deux mutants atténués, le T213A et le I262A, se sont montrés moins dépendants au co-récepteur claudine-1. D’autre part, nous avons montré que ces mutants utilisent un autre récepteur de la famille des claudines (claudine-6) pour l’entrée virale, indiquant ainsi un changement de dépendance à son co-récepteur claudine-1. A l’opposé, deux autres mutants, le L286A et le E303A, se sont révélés avoir une plus grande dépendance au co-récepteur claudin-1 pour l’entrée dans les cellules d’hépatome. Au cours de ce travail, nous avons également identifié une mutation intéressante à proximité du potentiel peptide de fusion. Cette mutation, G311A, conduit à la sécrétion de particules virales entières mais non infectieuses, suggérant un défaut d’entrée cellulaire pour ce virus. De façon très surprenante, nous avons également identifié une mutation (D263A) qui conduit à la sécrétion de particules virales dépourvues d’ARN génomique. Une caractérisation plus poussée de ce mutant a de plus révélé une modification dans la co-localisation subcellulaire entre l'ARN viral et la glycoprotéine E1, mettant en évidence pour la première fois un dialogue croisé entre E1 et l'ARN génomique du HCV lors de la morphogenèse du virus.En conclusion, nos observations permettent d’identifier précisément les régions spécifiques de la protéine E1 qui jouent un rôle dans l’assemblage et l’entrée du virus dans la cellule, mettant en évidence le rôle majeur de la glycoprotéine E1 au niveau des différentes étapes du cycle infectieux du HCV. / Being part of the viral particle, HCV envelope glycoproteins E1 and E2 play an essential role in virion morphogenesis as well as in HCV entry into liver cells. These glycoproteins form a non-covalent heterodimer, and until recently, research on HCV envelope glycoproteins has been mainly focused on E2. Indeed, this glycoprotein is the receptor-binding protein, it is also the major target of neutralizing antibodies and it was postulated to be the fusion protein. However, the recent publications of the structure of E2 do not show the presence of a fusion peptide and its structure does not fit with what one would expect for a fusion protein, suggesting that E1 alone or in association with E2 might be responsible for the fusion step. Concerning E1, only the crystal structure of the two-fifth N-terminal region, comprising amino acids 192 to 270, has been reported. This partial structure reveals a complex network of covalently linked, intertwined homodimers. The overall fold of the N-terminal E1 monomer consists of a beta-hairpin (β1 and β2) followed by a segment composed of a 16 amino-acid long alpha-helix (α1) flanking a three-strand antiparallel beta-sheet (β3, β4 and β5). In addition to the characterization of secondary structures within E1, a region located in the middle of the polypeptide (approximately between aa 274 and 292) has been suggested to play an active role during the fusion process and might potentially act as a fusion peptide. We took advantage of these recently published data to further investigate the functional role of HCV glycoprotein E1 by using a site-directed mutagenesis approach targeting conserved amino acids in the N-terminal region as well as in the region postulated to contain the fusion peptide in the context of an infectious clone. As expected, our results indicate that these mutations have no effect on virus replication. However, twenty-one out of twenty-eight mutations led to attenuation or inactivation of infectivity. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on tight junction protein claudin-1, a co-receptor for HCV. Instead, these mutant viruses relied on another claudin (claudin-6) for cellular entry, indicating a shift in receptor dependence. In contrast, two other mutants, L286 and E303, were more dependent on claudin-1 for cellular entry into hepatoma cells cells. We also identified an interesting mutation downstream of the putative fusion peptide, G311A, which leads to the release of non-infectious particles having a defect in cellular entry. Finally, an unexpected phenotype was also observed for D263A mutant, which was no longer infectious but led to the secretion of viral particles devoid of genomic RNA. Further characterization of the D263A mutant revealed a change in subcellular co-localization between HCV RNA and E1, highlighting for the first time a crosstalk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis.In conclusion, our observations allowed for the identification of specific regions in the E1 glycoprotein that play a role in virion assembly and entry, highlighting the major role played by this protein at different steps of the HCV infectious cycle.

Page generated in 0.0744 seconds