Spelling suggestions: "subject:"1protein scaffold"" "subject:"2protein scaffold""
1 |
Rôle de PCNA cytoplasmique dans la survie cellulaire / Role of cytoplasmic PCNA in cell survivalOhayon, Delphine 23 September 2016 (has links)
Notre laboratoire a mis en évidence la présence de la protéine Proliferating Cell Nuclear Antigen (PCNA) localisée exclusivement dans le cytosol du neutrophile exerçant une activité anti-apoptotique. C'est une protéine dite "scaffolding" qui s'associe à de nombreuses protéines partenaires pour assumer ses fonctions. Dans des conditions physiologiques, la relocalisation du noyau vers le cytosol de PCNA s'effectue à la fin de différenciation granulocytaire. Mon projet de thèse a permis d'identifier que cette relocalisation cytoplasmique était dérégulée dans les cellules leucémiques contribuant au phénomène de survie exagérée et à la résistance à la chimiothérapie. Nous avons montré qu'il y avait une augmentation très significative de PCNA cytoplasmique dans le cytosol des cellules HL-60 rendues résistantes à la daunorubicine (HL-60R) résultant d'un export nucléaire actif, en comparaison aux cellules HL-60 sensibles (HL-60S). Dans ces cellules HL-60R, PCNA cytoplasmique interagit avec NAMPT, une protéine qui a un rôle clé dans la voie de la glycolyse leur conférant un avantage de survie des cellules.Enfin, dans le neutrophile, nous avons mis en évidence pour la première fois une association structurale et fonctionnelle entre la protéine cytosolique p47Phox de la NADPH oxydase et PCNA suggérant que ce dernier contrôle à la fois la survie et l'état de repos du neutrophile.PCNA est donc un facteur clé cytoplasmique dans la survie de plusieurs types cellulaires. Identifier ses mécanismes d'action dans le but de moduler ses partenaires s'avère être un axe de recherche très utile pour développer de nouveaux traitements thérapeutiques. / Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNI replication, has been described as a key element in survival of neutrophil, a non-proliferating cell. Without enzymatic activity this main function is to build a protein scaffold through the binding and functional coordination of its different partners. This relocation of PCNA from the nucleus into the cytoplasm occurs at the end of granulocytic differentiation. From our present findings, we propose new paradigm in which cytosolic PCNA builds a protein scaffold that dictates Acute Myeloid Leukemia (AML) cell survival by enhancing their glycolytic metabolism and in turn conferrinl chemotherapy resistance. We have demonstrated that daunorubicin-resistant HL-60 cells (HL-60R have a prominent cytosolic PCNA localization due to increased nuclear export compared to their sensitive counterpart. By interacting with nicotinamide phosphoribosyltransferase (NAMPT), protein involved in the NAD biosynthesis, PCNA coordinates the glycolysis pathway and survival especially in HL-60R cells.In neutrophil, we have also demonstrated a functional and structural interaction between a protein p47Phox: a cytosolic subunit of NADPH oxidase and PCNA which suggested that PCNA control the survival and maintain the resting state of neutrophils. PCNA is a key element involved in survival of different types of cells. Decipher the molecular mechanisms of PCNA to modulate its partners represent a promising avenue of research.
|
2 |
Adaptive fabrication of biofunctional decellularized extracellular matrix niche towards complex engineered tissuesLi, Zhaoying January 2017 (has links)
Recreating organ-specific microenvironments of the extracellular matrix (ECM) in vitro has been an ongoing challenge in biofabrication. In this study, I present a biofunctional ECM-mimicking protein scaffold with tunable biochemical, mechanical and topographical properties. This scaffold, formed by microfibres, displays three favorable characteristics as a cell culture platform: high-loading of key ECM proteins, single-layered mesh membrane with controllable mesh size, and flexibility for supporting a range of cell culture configurations. Decellularized extracellular matrix (dECM) powder was used to fabricate this protein scaffold, as a close replicate of the chemical composition of physiological ECM. The highest dECM concentration in the solidified protein scaffold was 50 wt%, with gelatin consisting the rest. In practice, a high density of dECM-laden nano- to microfibres was directly patterned on a variety of substrates to form a single layer of mesh membrane, using the low-voltage electrospinning patterning (LEP) method. The smallest fibre diameter was measured at 450 nm, the smallest mesh size of the membrane was below 1 μm, and the thickness of the membrane was estimated to be less than 2 μm. This fabrication method demonstrated a good preservation of the key ECM proteins and growth factors, including collagen IV, laminin, fibronectin, VEGF and b-FGF. The integrated fibrous mesh exhibited robust mechanical properties, with tunable fibril Young’s modulus for over two orders of magnitude in the physiological range (depending on the dECM concentration). Combining this mesh membrane with 3D printing, a cell culture device was constructed. Co-culture of human glomerulus endothelial cells and podocytes was performed on this device, to simulate the blood-to-urine interface in vitro. Good cell attachment and viability were demonstrated, and specific cell differentiation and fibronectin secretion were observed. This dECM-laden protein scaffold sees the potential to be incorporated into a glomerulus-on-chip model, to further improve the physiological relevance of in vitro pathological models.
|
3 |
Metabolic channeling for biofuel production : Co-localization of Pdc and AdhMoreno de Palma, Isabel January 2017 (has links)
Enhancing productivity in bioprocesses, especially for biofuel production, is crucial for achieving an environmentally and economically sustainable biotechnology industry.Metabolic channelling occurs in nature when the intermediate between two consecutive enzymes in a pathway is directed from the first enzyme to the second avoiding diffusion in the cytosol. This would be very advantageous in bioprocesses as it would increase efficiency of a particular pathway, reducing side products and protecting the cells from potential toxic intermediates. In recent years different strategies for emulating channelling effect wereproposed and used with very promising results. Clustering of enzymes seems to be the simplest way to create metabolic channelling. In this master thesis, four different strategies to co-localize enzymes in clusters are compared. The metabolic pathway chosen as a model was ethanol production by pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh). Chimeric proteins were genetically engineered and transformed in E. coli creating different strains. Ethanol production by the different strains was measured to compare production efficiency. Cell growth and protein expression were used for further understanding of the results. Strengths and weaknesses of each strategy and proposals for further improvement were discussed.
|
4 |
Nové vazebné proteiny odvozené od malých proteinových domén cílené na diagnosticky využitelné terče / Novel binding proteins derived from small protein domains targeting diagnostically important moleculesVaňková, Lucie January 2018 (has links)
The rapid development of the gene engineering techniques, especially methods for in vitro directed evolution and combinatorial mutagenesis, has triggered the generation of new binding agents to almost any antigen of interest as an alternative to broadly used antibodies. These so-called non-Ig scaffolds are often derived from proteins with useful biophysical properties. While the therapeutic market is still dominated by monoclonal antibodies, the easy option of desired customization of non-Ig binders by conventional methods of gene engineering predestine them largely for the use in the diagnostic area. The ABD scaffold, derived from a three-helix bundle of albumin-binding domain of streptococcal protein G, represents one of the small non-Ig scaffolds. In our laboratory, we have established a highly complex combinatorial library developed on the ABD scaffold. This ABD scaffold-derived library was used to generate unique binders of human prostate cancer (PCa) biomarkers PSP94, KLK2, KLK11 for the more precise diagnosis of PCa. The second part of the thesis describes the generation of ABD-derived binders selectively recognizing different phenotypes of circulating tumor cells as a binding component of the cell capture zone of microfluidic chip for lung adenocarcinoma diagnosis. Beside this already...
|
5 |
Nové vazebné proteiny cílené na marker epiteliálních buněk / Novel protein binders targeting marker of epithelial cellsHuličiak, Maroš January 2019 (has links)
Fast and precise quantification of circulating tumour cells (CTC) in lung adenocarcinoma is a pivotal step in acceleration of diagnosis, selection of early therapy and estimation of treatment prognosis. Development of a new type of microfluidic device based on detection and quantification of epithelial- and mesenchymal-type CTC by high-affinity and cell-type specific protein binders anchored to a microfluidic chip surface represents a highly innovative approach. In this work, we used EpCAM membrane glycoprotein as a target for generation of epithelial cell-specific protein binders by a directed evolution of proteins selected from highly complex combinatorial libraries derived from albumin-binding domain scaffold (ABD) or human muscle protein domain-derived "Myomedin" scaffold. Collections of EpCAM-binding candidates from the both used libraries were generated and particular binding variants were further characterized by DNA sequencing, biochemically and by functional cell-surface binding assays. The best candidates might serve as robust anchor proteins of a microfludic chip. Key words: epithelial cell, EpCAM, protein binder, ribosome display, combinatorial library, protein scaffold
|
6 |
Ingénierie d’une ossature à motifs structuraux répétés par évolution dirigée : développements et applications d’un nouvel outil de reconnaissance moléculaire / Engineering of a repeat protein scaffold by directed evolution : Developments and Applications of a new tool for molecular recognitionChevrel, Anne 28 November 2014 (has links)
Les immunoglobulines ne sont pas les seules protéines capables de reconnaissance spécifique. D’autres systèmes d’immunité adaptative existent et beaucoup d’autres protéines peuvent aussi générer des interactions spécifiques de hautes affinités. Ce sont des ossatures/squelettes protéiques intéressants pour concevoir de nouveaux interacteurs.Une nouvelle famille de protéines synthétiques, appelées AlphaReps, basée sur la famille des protéines à HEAT repeat contenant un motif structural répété en double hélice alpha, a été construite au laboratoire. Le motif répété, d’abord identifié chez une archée thermostable, a été idéalisé en concevant une séquence consensus, grâce à l’alignement de séquences de motifs naturels. Une banque de protéines a alors été construite à partir de ce motif. Toutes les protéines de la banque ont une structure générale similaire mais elles diffèrent par le nombre de motifs insérés et par les cinq résidus hautement diversifiés situés sur la face externe de la seconde hélice de chacun des motifs. Ces nouvelles protéines sont exprimées très efficacement chez E. Coli, solubles, sans pont disulfure et très stables (50-100 mg. L-1 de culture, Tm > 70°C).Le travail de thèse présenté dans ce manuscrit s’intéresse à l’utilisation de ces nouvelles protéines synthétiques comme outils de reconnaissance moléculaire. Pour cela, plusieurs applications ont été développées. Dans la première partie, à l’aide de la technique du phage display, des interacteurs de hautes affinités pour la Green Fluorescent Protein ont pu être isolés au sein de la banque. Les interactions des protéines partenaires ont été caractérisées par la détermination des constantes d’affinité, ainsi que la résolution des structures cristallographiques de deux complexes contenant une AlphaRep spécifique et la GFP. Avec cette cible modèle, la possibilité d’utiliser les AlphaReps sélectionnées à l’intérieur des cellules eucaryotes vivantes pour reconnaître spécifiquement une cible protéique dans un milieu complexe a aussi été démontrée. L’utilisation des AlphaReps comme outils de diagnostique a été développée pour la détection de la cible membranaire FSHr (récepteur de l’hormone folliculo-stimulante), protéine surexprimée dans de nombreuses tumeurs. Ce projet a permis d’expérimenter des approches de sélections sur cellules entières, soulignant les progrès restant encore à accomplir pour la sélection contre des cibles plus complexes.La seconde partie de ce travail s’est intéressée à l’ingénierie et à l’évolution des AlphaReps. Ainsi, l’insertion de résidus variables sur le dernier motif (C-cap) de protéines de la banque a pu être validé. Une approche innovante de shuffling modulaire, adaptée à l’ossature AlphaRep a permis de cerner les limites de cette méthode et les améliorations à apporter pour être en mesure d’augmenter l’affinité d’interacteurs présélectionnés. La banque d’AlphaReps de phage display a également été transférée dans un vecteur de PCA (Protein Fragment Complementation Assay) utilisant la protéine scindée DHFR (Dihydrofolate Reductase) comme protéine rapportrice. Cela a permis de sélectionner des AlphaReps spécifiques pour des cibles non exploitables en phage display. L’utilisation de la cis-fusion entre une AlphaRep et sa cible, combinée à la technique de PCA, s’est révélée très efficace pour la sélection et la cristallisation de protéines réfractaires telles que la protéine ComD, ici présentée comme preuve de la réussite de cette approche.Les AlphaReps sont donc des protéines artificielles, parmi lesquelles des interacteurs spécifiques peuvent être isolés pour des cibles variées. Un large panel d’applications peut être envisagé comme le développement d’outils d’aide à la cristallogenèse ou celui d’outils de reconnaissance moléculaire in vivo. / Immunoglobulin fold is not the only basis for specific recognition proteins. Other adaptive immunity systems exist and many other proteins are also able to mediate specific high-affinity interactions. These are interesting scaffolds to generate alternative binding molecules.A new family of artificial proteins, named AlphaRep, based on HEAT repeat proteins containing an alpha-helical repeated motif, was designed in the laboratory. The repeated motif, first identified in a thermostable archae protein of unknown function was refined and idealized using a consensus design strategy. A library of artificial proteins based on this design was then constructed. All proteins from this library share the same general fold but differ both in the number of repeats and in a set of five highly randomized positions per repeat. The randomized side chains are located on the outside surface of the second helix. Sequences from this library are efficiently expressed as soluble, folded and very stable proteins (50-100 mg. L-1 of culture, Tm > 70°C).The work presented in this manuscript is focused on the use of those new synthetic proteins as molecular recognition tools. Then, different applications have been developed.In a first part, binders with high affinity for the green fluorescent protein were selected by phage display. Complexes were characterized. Affinity between partners was measured and structures of two of those complexes containing a specific AlphaRep and the protein target were solved by X-ray crystallography. Thanks to this model target, it was demonstrated that AlphaReps could be used in living cells for the specific recognition of the protein they have been selected for. AlphaReps have also been developed as a diagnostic tool to detect the membrane protein FSHr (Follicle stimulating Hormone receptor), shown to be overexpressed in various tumors. In this project, selections on entire cells have been performed, showing the limit of the selections approaches with complex targets.The second part of this work focused on engineering and evolutions of AlphaRep proteins. The insertion of randomized residues at specific positions in the last motif (C-cap) was validated. An innovative approach of modular shuffling, adjusted to the AlphaRep scaffold, was assessed. Limitations of this approach to perform affinity maturation of AlphaReps could then be understood. Finally, the AlphaRep Library was transferred to a PCA (Protein Fragment Complementation Assay) vector using the split DHFR (Dihydrofolate Reductase) as reporter protein. With this new selection system, specific Alphareps could be selected for protein targets not suitable for phage display selection. A cis-fusion strategy was employed to express the AlphaRep fused to its partner in order to increase the stability and solubility of the target as well as helping for its crystallogenesis. This approach, combined with the PCA selection, was successful to obtain crystals of the ComD protein (unstable protein), shown here as an example of success for this new method.AlphaReps are thus artificial proteins, among which specific binders can be isolated for various targets, showing a strong potential for a large range of applications from crystallogenesis helpers to in vivo molecular recognition tools.
|
7 |
L'ingénierie protéique moderne : de l’évolution moléculaire dirigée à la conception rationnelle de biomolécules à intérêt diagnostique et vaccinal / Modern protein engineering : from directed molecular evolution to rational design of biomolecules with diagnostic and vaccine interestLagoutte, Priscillia 06 September 2018 (has links)
L’ingénierie protéique servant autrefois à comprendre les relations structures-fonctions des protéines connait un tournant majeur depuis plusieurs années. L’ingénierie protéique évolue pour créer des nouvelles fonctions protéiques : c’est la naissance de l’ingénierie protéique moderne. L’objectif de ma thèse a consisté à mettre en place et caractériser deux approches indépendantes d’ingénierie protéique dans le domaine du vaccin et du diagnostic. Le premier projet consistait à générer des ligands protéiques à partir d‘échafaudages moléculaires (des alternatifs aux anticorps) en couplant le ribosome display au NGS et en développant des outils d’analyses bio-informatiques. Des sélections contre des cibles protéiques d’origine bactérienne et virale ont conduit à l’identification de ligands Affibodies affins (µM au nM). Leur caractérisation a validé leur potentiel comme outil de recherche et de réactif diagnostique. Ces études ont permis de valider la plateforme de génération des ligands mise en place, en augmentant l’exploration de l’espace de diversité des interactions des ligands. Le second projet portait sur le développement d’une plateforme de présentation et de vectorisation à partir de particules d’encapsuline. Elles ont été génétiquement modifiées pour présenter de manière répétée à leur surface l’ectodomaine de la protéine de matrice M2 (M2e) du virus Influenza A H1N1 tout en encapsulant une protéine hétérologue : l’eGFP. Les nanoparticules modifiées sont correctement formées et encapsulent l’eGFP. Des souris immunisées par ces particules induisent une réponse anticorps spécifique contre l’épitope M2e et l’eGFP. L’utilisation de ces nanoparticules comme plateforme vaccinale de présentation et de vectorisation est prometteuse et ouvre la voie pour d’autres applications en biotechnologie / In the past, protein engineering used to understand function and structure relationship. But since few years, protein engineering was used to create new protein functions: modern protein engineering was born. The aim of my thesis was to set up and characterize two approaches of protein engineering in diagnostic and vaccine field. The first project was to generate artificial binder using protein scaffolds as an alternative to antibodies by coupling ribosome display (RD) to NGS and developing bio-informatics tools. Screening and selection against bacterial and viral targets have led to affibody binder’s identification with an affinity range from µM to nM. Their characterization has validated their potential as research tools and protein reagents for diagnostic assay. Coupling ribosome display to high throughput sequencing as means to directly identify selected binder coding sequences, enormously enhance binder discovery depth. The second project was to generate an innovative nanocarrier based on encapsulin nanoparticle, for customized peptide display and cargo protein vectorization. Encapsulin particles from T.maritima were genetically modified for simultaneous display of the matrix protein 2 ectodomain of the influenza H1N1 A virus and heterologous protein eGFP packaging. Genetically engineered encapsulin nanoparticles were well-formed and abled to efficiently load eGFP. Immunogenicity studies revealed antibody responses against both the surface epitope and the loaded cargo protein. Taken together, this display system is a versatile tool for rational vaccine design and paves the way for new applications in the research fields of vaccine, antimicrobial research and other biotechnological applications
|
8 |
Nové vazebné proteiny cílené na marker epiteliálních buněk / Novel protein binders targeting marker of epithelial cellsHuličiak, Maroš January 2019 (has links)
Fast and precise quantification of circulating tumour cells (CTC) in lung adenocarcinoma is a pivotal step in acceleration of diagnosis, selection of early therapy and estimation of treatment prognosis. Development of a new type of microfluidic device based on detection and quantification of epithelial- and mesenchymal-type CTC by high-affinity and cell-type specific protein binders anchored to a microfluidic chip surface represents a highly innovative approach. In this work, we used EpCAM membrane glycoprotein as a target for generation of epithelial cell- specific protein binders by a directed evolution of proteins selected from highly complex combinatorial libraries derived from albumin-binding domain scaffold (ABD) or human muscle protein domain-derived "Myomedin" scaffold. Collections of EpCAM-binding candidates from the both used libraries were generated and particular binding variants were further characterized by DNA sequencing, biochemically and by functional cell-surface binding assays. The best candidates might serve as robust anchor proteins of a microfludic chip. Key words: epithelial cell, EpCAM, protein binder, ribosome display, combinatorial library, protein scaffold
|
9 |
Příprava a charakterizace vazebných proteinů mimikujících epitopy protilátek neutralizujících virus HIV-1 / Preparation and Characterization of Protein Binders Mimicking Epitopes of HIV-1 Neutralizing AntibodiesŠulc, Josef January 2021 (has links)
For three decades, the ongoing HIV pandemic has taken the lives of tens of millions of people. Still, more tens of millions are fighting this incurable disease today. Current failures in combating this global problem are caused mainly by the virus's extreme ability of mutation, its very effective molecular shield which repels the immune system's attacks, and its immense variability. A breakthrough, achieved relatively recently, is the discovery of the so-called broadly neutralizing antibodies against HIV-1, which carry a very efficient and broad neutralizing response. So far, it's not known how to elucidate the production of these antibodies in the infected hosts to quell or altogether eliminate the virus. This work deals with experimental results, which led to both in vivo and in vitro proof-of-concept of the so-called protein mimetics, the ability to imitate viral surface epitopes, and therefore stimulate an efficient immune response carried by targeted broadly neutralizing antibodies. This effect is mediated by recombinant binding proteins, based on the Myomedin scaffold. This work describes the selection and characterization of these binding proteins mimicking the epitopes of one of the most effective broadly neutralizing antibodies, 10E8. It shows that the binding affinities of selected...
|
Page generated in 0.0386 seconds