Spelling suggestions: "subject:"protein:protein interaction prediction"" "subject:"proteinprotein interaction prediction""
1 |
From cancer gene expression to protein interaction: Interaction prediction, network reasoning and applications in pancreatic cancerDaw Elbait, Gihan Elsir Ahmed 10 July 2009 (has links) (PDF)
Microarray technologies enable scientists to identify co-expressed genes at large scale. However, the gene expression analysis does not show functional relationships between co-expressed genes. There is a demand for effective approaches to analyse gene expression data to enable biological discoveries that can lead to identification of markers or therapeutic targets of many diseases.
In cancer research, a number of gene expression screens have been carried out to identify genes differentially expressed in cancerous tissue such as Pancreatic Ductal Adenocarcinoma (PDAC). PDAC carries very poor prognosis, it eludes early detection and is characterised by its aggressiveness and resistance to currently available therapies. To identify molecular markers and suitable targets, there exist a research effort that maps differentially expressed genes to protein interactions to gain an understanding at systems level. Such interaction networks have a complex interconnected structure, whose the understanding of which is not a trivial task.
Several formal approaches use simulation to support the investigation of such networks. These approaches suffer from the missing knowledge concerning biological systems. Reasoning in the other hand has the advantage of dealing with incomplete and partial information of the network knowledge.
The initial approach adopted was to provide an algorithm that utilises a network-centric approach to pancreatic cancer, by re-constructing networks from known interactions and predicting novel protein interactions from structural templates. This method was applied to a data set of co-expressed PDAC genes. To this end, structural domains for the gene products are identified by using threading which is a 3D structure prediction technique. Next, the Protein Structure Interaction Database (SCOPPI), a database that classifies and annotates domain interactions derived from all known protein structures, is used to find templates of structurally interacting domains. Moreover, a network of related biological pathways for the PDAC data was constructed.
In order to reason over molecular networks that are affected by dysregulation of gene expression, BioRevise was implemented. It is a belief revision system where the inhibition behaviour of reactions is modelled using extended logic programming. The system computes a minimal set of enzymes whose malfunction explains the abnormal expression levels of observed metabolites or enzymes.
As a result of this research, two complementary approaches for the analysis of pancreatic cancer gene expression data are presented. Using the first approach, the pathways found to be largely affected in pancreatic cancer are signal transduction, actin cytoskeleton regulation, cell growth and cell communication. The analysis indicates that the alteration of the calcium pathway plays an important role in pancreas specific tumorigenesis. Furthermore, the structural prediction method reveals ~ 700 potential protein-protein interactions from the PDAC microarray data, among them, 81 novel interactions such as: serine/threonine kinase CDC2L1 interacting with cyclin-dependent kinase inhibitor CDKN3 and the tissue factor pathway inhibitor
2 (TFPI2) interacting with the transmembrane protease serine 4 (TMPRSS4). These resulting genes were further investigated and some were found to be potential therapeutic markers for PDAC. Since TMPRSS4 is involved in metastasis formation, it is hypothesised that the upregulation of TMPRSS4 and the downregulation of its predicted inhibitor TFPI2 plays an important role in this process. The predicted protein-protein network inspired the analysis of the data from two other perspectives. The resulting protein-protein interaction network highlighted the importance of the co-expression of KLK6 and KLK10 as prognostic factors for survival in PDAC
as well as the construction of a PDAC specific apoptosis pathway to study different effects of multiple gene silencing in order to reactivate apoptosis in PDAC.
Using the second approach, the behaviour of biological interaction networks using computational logic formalism was modelled, reasoning over the networks is enabled and the abnormal behaviour of its components is explained. The usability of the BioRevise system is demonstrated through two examples, a metabolic disorder disease and a deficiency in a pancreatic
cancer associated pathway. The system successfully identified the inhibition of the enzyme glucose-6-phosphatase as responsible for the Glycogen storage disease type I, which according to literature is known to be the main reason for this disease. Furthermore, BioRevise was used to model reaction inhibition in the Glycolysis pathway which is known to be affected by Pancreatic cancer.
|
2 |
From cancer gene expression to protein interaction: Interaction prediction, network reasoning and applications in pancreatic cancerDaw Elbait, Gihan Elsir Ahmed 16 June 2009 (has links)
Microarray technologies enable scientists to identify co-expressed genes at large scale. However, the gene expression analysis does not show functional relationships between co-expressed genes. There is a demand for effective approaches to analyse gene expression data to enable biological discoveries that can lead to identification of markers or therapeutic targets of many diseases.
In cancer research, a number of gene expression screens have been carried out to identify genes differentially expressed in cancerous tissue such as Pancreatic Ductal Adenocarcinoma (PDAC). PDAC carries very poor prognosis, it eludes early detection and is characterised by its aggressiveness and resistance to currently available therapies. To identify molecular markers and suitable targets, there exist a research effort that maps differentially expressed genes to protein interactions to gain an understanding at systems level. Such interaction networks have a complex interconnected structure, whose the understanding of which is not a trivial task.
Several formal approaches use simulation to support the investigation of such networks. These approaches suffer from the missing knowledge concerning biological systems. Reasoning in the other hand has the advantage of dealing with incomplete and partial information of the network knowledge.
The initial approach adopted was to provide an algorithm that utilises a network-centric approach to pancreatic cancer, by re-constructing networks from known interactions and predicting novel protein interactions from structural templates. This method was applied to a data set of co-expressed PDAC genes. To this end, structural domains for the gene products are identified by using threading which is a 3D structure prediction technique. Next, the Protein Structure Interaction Database (SCOPPI), a database that classifies and annotates domain interactions derived from all known protein structures, is used to find templates of structurally interacting domains. Moreover, a network of related biological pathways for the PDAC data was constructed.
In order to reason over molecular networks that are affected by dysregulation of gene expression, BioRevise was implemented. It is a belief revision system where the inhibition behaviour of reactions is modelled using extended logic programming. The system computes a minimal set of enzymes whose malfunction explains the abnormal expression levels of observed metabolites or enzymes.
As a result of this research, two complementary approaches for the analysis of pancreatic cancer gene expression data are presented. Using the first approach, the pathways found to be largely affected in pancreatic cancer are signal transduction, actin cytoskeleton regulation, cell growth and cell communication. The analysis indicates that the alteration of the calcium pathway plays an important role in pancreas specific tumorigenesis. Furthermore, the structural prediction method reveals ~ 700 potential protein-protein interactions from the PDAC microarray data, among them, 81 novel interactions such as: serine/threonine kinase CDC2L1 interacting with cyclin-dependent kinase inhibitor CDKN3 and the tissue factor pathway inhibitor
2 (TFPI2) interacting with the transmembrane protease serine 4 (TMPRSS4). These resulting genes were further investigated and some were found to be potential therapeutic markers for PDAC. Since TMPRSS4 is involved in metastasis formation, it is hypothesised that the upregulation of TMPRSS4 and the downregulation of its predicted inhibitor TFPI2 plays an important role in this process. The predicted protein-protein network inspired the analysis of the data from two other perspectives. The resulting protein-protein interaction network highlighted the importance of the co-expression of KLK6 and KLK10 as prognostic factors for survival in PDAC
as well as the construction of a PDAC specific apoptosis pathway to study different effects of multiple gene silencing in order to reactivate apoptosis in PDAC.
Using the second approach, the behaviour of biological interaction networks using computational logic formalism was modelled, reasoning over the networks is enabled and the abnormal behaviour of its components is explained. The usability of the BioRevise system is demonstrated through two examples, a metabolic disorder disease and a deficiency in a pancreatic
cancer associated pathway. The system successfully identified the inhibition of the enzyme glucose-6-phosphatase as responsible for the Glycogen storage disease type I, which according to literature is known to be the main reason for this disease. Furthermore, BioRevise was used to model reaction inhibition in the Glycolysis pathway which is known to be affected by Pancreatic cancer.
|
3 |
Pattern Discovery in Protein Structures and Interaction NetworksAhmed, Hazem Radwan A. 21 April 2014 (has links)
Pattern discovery in protein structures is a fundamental task in computational biology, with important applications in protein structure prediction, profiling and alignment. We propose a novel approach for pattern discovery in protein structures using Particle Swarm-based flying windows over potentially promising regions of the search space. Using a heuristic search, based on Particle Swarm Optimization (PSO) is, however, easily trapped in local optima due to the sparse nature of the problem search space. Thus, we introduce a novel fitness-based stagnation detection technique that effectively and efficiently restarts the search process to escape potential local optima.
The proposed fitness-based method significantly outperforms the commonly-used distance-based method when tested on eight classical and advanced (shifted/rotated) benchmark functions, as well as on two other applications for proteomic pattern matching and discovery. The main idea is to make use of the already-calculated fitness values of swarm particles, instead of their pairwise distance values, to predict an imminent stagnation situation. That is, the proposed fitness-based method does not require any computational overhead of repeatedly calculating pairwise distances between all particles at each iteration. Moreover, the fitness-based method is less dependent on the problem search space, compared with the distance-based method.
The proposed pattern discovery algorithms are first applied to protein contact maps, which are the 2D compact representation of protein structures. Then, they are extended to work on actual protein 3D structures and interaction networks, offering a novel and low-cost approach to protein structure classification and interaction prediction. Concerning protein structure classification, the proposed PSO-based approach correctly distinguishes between the positive and negative examples in two protein datasets over 50 trials. As for protein interaction prediction, the proposed approach works effectively on complex, mostly sparse protein interaction networks, and predicts high-confidence protein-protein interactions — validated by more than one computational and experimental source — through knowledge transfer between topologically-similar interaction patterns of close proximity.
Such encouraging results demonstrate that pattern discovery in protein structures and interaction networks are promising new applications of the fast-growing and far-reaching PSO algorithms, which is the main argument of this thesis. / Thesis (Ph.D, Computing) -- Queen's University, 2014-04-21 12:54:03.37
|
4 |
Prediction of Protein-Protein Interaction Sites with Conditional Random Fields / Vorhersage der Protein-Protein Wechselwirkungsstellen mit Conditional Random FieldsDong, Zhijie 27 April 2012 (has links)
No description available.
|
5 |
On the study of 3D structure of proteins for developing new algorithms to complete the interactome and cell signalling networksPlanas Iglesias, Joan, 1980- 21 January 2013 (has links)
Proteins are indispensable players in virtually all biological events. The functions of proteins are determined by their three dimensional (3D) structure and coordinated through intricate networks of protein-protein interactions (PPIs). Hence, a deep comprehension of such networks turns out to be crucial for understanding the cellular biology. Computational approaches have become critical tools for analysing PPI networks. In silico methods take advantage of the existing PPI knowledge to both predict new interactions and predict the function of proteins. Regarding the task of predicting PPIs, several methods have been already developed. However, recent findings demonstrate that such methods could take advantage of the knowledge on non-interacting protein pairs (NIPs). On the task of predicting the function of proteins,the Guilt-by-Association (GBA) principle can be exploited to extend the functional annotation of proteins over PPI networks. In this thesis, a new algorithm for PPI prediction and a protocol to complete cell signalling networks are presented. iLoops is a method that uses NIP data and structural information of proteins to predict the binding fate of protein pairs. A novel protocol for completing signalling networks –a task related to predicting the function of a protein, has also been developed. The protocol is based on the application of GBA principle in PPI networks. / Les proteïnes tenen un paper indispensable en virtualment qualsevol procés biològic. Les funcions de les proteïnes estan determinades per la seva estructura tridimensional (3D) i són coordinades per mitjà d’una complexa xarxa d’interaccions protiques (en anglès, protein-protein interactions, PPIs). Axí doncs, una comprensió en profunditat d’aquestes xarxes és fonamental per entendre la biologia cel•lular. Per a l’anàlisi de les xarxes d’interacció de proteïnes, l’ús de tècniques computacionals ha esdevingut fonamental als darrers temps. Els mètodes in silico aprofiten el coneixement actual sobre les interaccions proteiques per fer prediccions de noves interaccions o de les funcions de les proteïnes. Actualment existeixen diferents mètodes per a la predicció de noves interaccions de proteines. De tota manera, resultats recents demostren que aquests mètodes poden beneficiar-se del coneixement sobre parelles de proteïnes no interaccionants (en anglès, non-interacting pairs, NIPs). Per a la tasca de predir la funció de les proteïnes, el principi de “culpable per associació” (en anglès, guilt by association, GBA) és usat per extendre l’anotació de proteïnes de funció coneguda a través de xarxes d’interacció de proteïnes. En aquesta tesi es presenta un nou mètode pre a la predicció d’interaccions proteiques i un nou protocol basat per a completar xarxes de senyalització cel•lular. iLoops és un mètode que utilitza dades de parells no interaccionants i coneixement de l’estructura 3D de les proteïnes per a predir interaccions de proteïnes. També s’ha desenvolupat un nou protocol per a completar xarxes de senyalització cel•lular, una tasca relacionada amb la predicció de les funcions de les proteïnes. Aquest protocol es basa en aplicar el principi GBA a xarxes d’interaccions proteiques.
|
Page generated in 0.1675 seconds