• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Absolute and relative quantification of proteins in large protein-RNA assemblies by mass spectrometry / Absolute und relative Quantifizierung von Proteinen in großen Protein-RNA-Komplexen mittels Massenspektrometrie

Schmidt, Carla 08 June 2010 (has links)
No description available.
2

Purification of UV cross-linked RNA-protein complexes by phenol-toluol extraction

Urdaneta Zurbarán, Erika Cristina 24 April 2020 (has links)
RNA-Bindungsproteine spielen Schlüsselfunktionen bei der post-transkriptionellen Regulation der Genexpression. Durch Bindung an RNA steuern sie die RNA-Aufbereitung, den Transport, die Stabilität und die Translation. In den letzten zehn Jahren wurden bedeutende Fortschritte bei der Aufklärung bakterieller post-transkriptioneller Mechanismen erzielt. Es wird immer deutlicher, dass diese Regulierungsebene auch bei der Pathogenese und Antibiotikaresistenz eine wichtige Rolle spielt. Die Analyse von RNA-Protein-Komplexen (RNPs) auf Proteomebene wurde durch die (m)RNA-interactome-capture Technologie vorangetrieben, die den Teil des Proteoms isoliert, welcher mit polyadenylierter (m)RNA vernetzt ist. Dies hat zur Identifizierung von Hunderten von neuen RBPs in einer Vielzahl von eukaryontischen Arten, vom Menschen bis zur Hefe, geführt. Allerdings fehlt die Poly-Adenylierung in der funktionellen RNA von Bakterien und anderen Klassen von -eukaryontischen- regulatorischen RNAs. Ziel dieser Arbeit war es, diese Einschränkung durch die Entwicklung einer neuartigen und unvoreingenommenen Methode zur Aufreinigung von UV-vernetzten RNPs in lebenden Zellen zu überwinden: PTex (Phenol-Toluol-Extraktion). Das Reinigungsprinzip basiert ausschließlich auf den physikalisch-chemischen Eigenschaften von vernetzten RNPs gegenüber ungebundenen Proteinen oder RNA; es ist dabei unparteiisch gegenüber spezifischen RNAs oder Proteinen und ermöglicht somit erstmals eine systemweite Analyse von nicht-poly-(A)-RNA-interagierenden Proteinen sowohl in eukaryontischen (HEK293) als auch in prokaryontischen (Salmonella Typhimurium) Zellen. / RNA binding proteins play key functions in post-transcriptional regulation of gene expression. By binding to RNA, they control RNA editing, transport, stability and translation. In the last decade, significant advances have been made in the elucidation of bacterial post-transcriptional mechanisms. It is becoming increasingly clear that this layer of regulation also plays an important role in pathogenesis and antibiotic resistance. The analysis of RNA-protein complexes (RNPs) at the proteome level has been driven by the (m)RNA interactome capture technology which isolates the proteome cross-linked to poly-adenylated (m)RNA. This has resulted in the identification of hundreds of novel RBPs in a diversity of eukaryotic species ranging from humans to yeast. However, poly-adenylation is absent in functional RNA from bacteria and other classes of -eukaryotic- regulatory RNAs. This work was aimed to overcome that limitation by developing a novel and unbiased method for the purification of UV-cross-linked RNPs in living cells: PTex (Phenol Toluol extraction). The purification principle is solely based on physicochemical properties of cross-linked RNPs versus unbound proteins or RNA, and it is impartial towards specific RNA or proteins; enabling for the first time a system-wide analysis of non-poly(A) RNA interacting proteins in both eukaryotic (HEK293) and prokaryotic (Salmonella Typhimurium) cells.
3

Beyond the limit

Mainz, Andi 26 October 2012 (has links)
Strukturelle Untersuchungen mittels Lösungs-NMR Spektroskopie sind für supramolekulare Maschinen mit Molekulargewichten von mehr als 150 kDa nur beschränkt möglich. Die Festkörper-NMR mit Probenrotation im sogenannten magischen Winkel (MAS) stellt dagegen eine molekulargewichtsunabhängige Methode dar. Im Rahmen dieser Arbeit wurde eine neue Methode entwickelt, die die MAS NMR Spektroskopie an supramolekularen Komplexen in Lösung erlaubt. Proteinlösungen bilden demnach durch MAS und dessen Ultrazentrifugationseffekt homogene Proteinsedimente aus, in denen die rotatorische Diffusion großer Proteinkomplexe überwiegend aufgehoben ist. Auf diese Weise können klassische Festkörper-NMR Methoden angewandt werden, ohne dass Präzipitations- oder Kristallisationsverfahren erforderlich sind. In Kombination mit Proteindeuterierung, Protonendetektion sowie paramagnetischer Relaxationsverstärkung ermöglichte diese neuartige Methode die Zuordnung von Rückgrat-Amidresonanzen des 20S Proteasoms mit einem Molekulargewicht von 1,1 MDa. Weiterhin wurde diese Methode zur Untersuchung des kleinen Hitzeschockproteins alpha-B-Crystallin und dessen Cu(II)-Bindungseigenschaften genutzt. Das Chaperon (600 kDa) spielt eine wesentliche Rolle in der zellulären Proteinhomeostase. Verschiedenste NMR Techniken und andere biophysikalische Methoden zeigen, dass die konservierte alpha-Crystallin-Domäne ein Cu(II)-Ion nahe der Monomer-Monomer Interaktionsfläche mit pikomolarer Affinität bindet. Die Cu(II)-induzierte Freilegung von Substrat-Interaktionsflächen und Veränderungen in der dynamischen Quartärstruktur modulieren so die oligomere Architektur und die Chaperonaktivität von alpha-B-Crystallin. Die hier erstmals beschriebene MAS NMR Spektroskopie von sedimentierten Biomolekülen legt einen wichtigen Grundstein für zukünftige Struktur- und Dynamikuntersuchungen an großen molekularen Maschinen. / Structural investigations of large biomolecules by solution-state NMR are challenging in case the molecular weight of the complex exceeds 150 kDa. Magic-angle-spinning (MAS) solid-state NMR is a powerful tool for the characterization of biomolecular systems irrespective of their molecular weight. In this work, an approach was developed, which enables the investigation of supramolecular modules by MAS NMR. Protein solutions can yield fairly homogeneous sediments due to the ultracentrifugal forces during MAS. Since rotational diffusion is impaired, typical solid-state NMR techniques can thus be applied without the need of precipitation or crystallization. This new approach in combination with protein deuteration, proton-detection and paramagnetic relaxation enhancement enabled the observation and the assignment of backbone amide resonances of a 20S proteasome assembly with a molecular weight of 1.1 MDa. Similarly, the approach was used to characterize the small heat-shock protein alpha-B-crystallin with respect to its Cu(II)-dependent chaperone activity. The chaperone (600 kDa) plays an essential role in cellular protein homeostasis. We show that the conserved alpha-crystallin core domain is the elementary Cu(II)-binding unit specifically coordinating one Cu(II) ion near to the dimer interface with picomolar binding affinity. We suggest that Cu(II)-binding unblocks potential client binding sites and alters quaternary dynamics of both the dimeric building block as well as the higher-order assemblies of alpha-B-crystallin. In summary, MAS NMR employed to biomolecules in solution is a very promising tool to explore structural and dynamic properties of large biological machines with no upper size limit.

Page generated in 0.0345 seconds