• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The proton as a dosimetric and diagnostic probe / Le proton : sonde dosimétrique et diagnostique

Bopp, Cécile 13 October 2014 (has links)
L’imagerie proton est étudiée comme alternative à la tomodensitométrie X pour la planification de traitement en hadronthérapie. En obtenant directement les pouvoirs d’arrêt relatifs des tissus, l’incertitude sur le parcours des particules pourrait être réduite. Un scanner à protons est constitué d’un calorimètre ou d’un détecteur de parcours afin d’obtenir l’information sur l’énergie déposée par chaque proton dans l’objet imagé et de deux ensembles de trajectographes enregistrant la position et direction de chaque particule en amont et en aval de l’objet. Ce travail concerne l’étude des données d’un scanner à protons et l’utilisation possible de toutes les informations enregistrées. Une étude de reconstruction d’image a permis de montrer que les informations sur le taux de transmission et sur la déviation de chaque particule peuvent être utilisées pour produire des images aux propriétés visuelles intéressantes pour le diagnostic. La preuve de concept de la possibilité d’une imagerie quantitative utilisant ces informations est présentée. Ces résultats sont une première étape vers l’imagerie proton utilisant toutes les données enregistrées. / Proton computed tomography is being studied as an alternative to X-ray CT imaging for charged particle therapy treatment planning. By directly mapping the relative stopping power of the tissues, the uncertainty on the range of the particles could be reduced. A proton scanner consists in a calorimeter or range-meter to obtain the information on the energy lost by each proton in the object, as well as two sets of tracking planes to record the position and direction of each particle upstream and downstream from the object. This work concerns the study of the outputs of a proton scanner and the possible use of all the recorded information. A reconstruction study made it possible to show that the information on the transmission rate and on the scattering of each particle can be used to produce images with visual properties that could be of interest for diagnostics. The proof of concept of the possibility of quantitative imaging using this information is also put forward. These results are the first step towards a clinical use of proton imaging with all the recorded data.
2

Proton Computed Tomography: Matrix Data Generation Through General Purpose Graphics Processing Unit Reconstruction

witt, micah 01 March 2014 (has links)
Proton computed tomography (pCT) is an image modality that will improve treatment planning for patients receiving proton radiation therapy compared with the current techniques, which are based on X-ray CT. Images are reconstructed in pCT by solving a large and sparse system of linear equations. The size of the system necessitates matrix-partitioning and parallel reconstruction algorithms to be implemented across some sort of cluster computing architecture. The prototypical algorithm to solve the pCT system is the algebraic reconstruction technique (ART) that has been modified into parallel versions called block-iterative-projection (BIP) methods and string-averaging-projection (SAP) methods. General purpose graphics processing units (GPGPUs) have hundreds of stream processors for massively parallel calculations. A GPGPU cluster is a set of nodes, with each node containing a set of GPGPUs. This thesis describes a proton simulator that was developed to generate realistic pCT data sets. Simulated data sets were used to compare the performance of a BIP implementation against a SAP implementation on a single GPGPU with the data stored in a sparse matrix structure called the compressed sparse row (CSR) format. Both BIP and SAP algorithms allow for parallel computation by creating row partitions of the pCT linear system. The difference between these two general classes of algorithms is that BIP permits parallel computations within the row partitions yet sequential computations between the row partitions, whereas SAP permits parallel computations between the row partitions yet sequential computations within the row partitions. This thesis also introduces a general partitioning scheme to be applied to a GPGPU cluster to achieve a pure parallel ART algorithm while providing a framework for column partitioning to the pCT system, as well as show sparse visualization patterns that can be found via specified ordering of the equations within the matrix.
3

Proton computed tomography / Tomographie proton informatisée

Quiñones, Catherine Thérèse 28 September 2016 (has links)
L'utilisation de protons dans le traitement du cancer est largement reconnue grâce au parcours fini des protons dans la matière. Pour la planification du traitement par protons, l'incertitude dans la détermination de la longueur du parcours des protons provient principalement de l'inexactitude dans la conversion des unités Hounsfield (obtenues à partir de tomographie rayons X) en pouvoir d'arrêt des protons. La tomographie proton (pCT) est une solution attrayante car cette modalité reconstruit directement la carte du pouvoir d'arrêt relatif à l'eau (RSP) de l'objet. La technique pCT classique est basée sur la mesure de la perte d'énergie des protons pour reconstruire la carte du RSP de l'objet. En plus de la perte d'énergie, les protons subissent également des diffusions coulombiennes multiples et des interactions nucléaires qui pourraient révéler d'autres propriétés intéressantes des matériaux non visibles avec les cartes de RSP. Ce travail de thèse a consisté à étudier les interactions de protons au travers de simulations Monte Carlo par le logiciel GATE et d'utiliser ces informations pour reconstruire une carte de l'objet par rétroprojection filtrée le long des chemins les plus vraisemblables des protons. Mise à part la méthode pCT conventionnelle par perte d'énergie, deux modalités de pCT ont été étudiées et mises en œuvre. La première est la pCT par atténuation qui est réalisée en utilisant l'atténuation des protons pour reconstruire le coefficient d'atténuation linéique des interactions nucléaires de l'objet. La deuxième modalité pCT est appelée pCT par diffusion qui est effectuée en mesurant la variation angulaire due à la diffusion coulombienne pour reconstruire la carte de pouvoir de diffusion, liée à la longueur de radiation du matériau. L'exactitude, la précision et la résolution spatiale des images reconstruites à partir des deux modalités de pCT ont été évaluées qualitativement et quantitativement et comparées à la pCT conventionnelle par perte d'énergie. Alors que la pCT par perte d'énergie fournit déjà les informations nécessaires pour calculer la longueur du parcours des protons pour la planification du traitement, la pCT par atténuation et par diffusion donnent des informations complémentaires sur l'objet. D'une part, les images pCT par diffusion et par atténuation fournissent une information supplémentaire intrinsèque aux matériaux de l'objet. D'autre part, dans certains des cas étudiés, les images pCT par atténuation démontrent une meilleure résolution spatiale dont l'information fournie compléterait celle de la pCT par perte d'énergie. / The use of protons in cancer treatment has been widely recognized thanks to the precise stopping range of protons in matter. In proton therapy treatment planning, the uncertainty in determining the range mainly stems from the inaccuracy in the conversion of the Hounsfield units obtained from x-ray computed tomography to proton stopping power. Proton CT (pCT) has been an attractive solution as this modality directly reconstructs the relative stopping power (RSP) map of the object. The conventional pCT technique is based on measurements of the energy loss of protons to reconstruct the RSP map of the object. In addition to energy loss, protons also undergo multiple Coulomb scattering and nuclear interactions which could reveal other interesting properties of the materials not visible with the RSP maps. This PhD work is to investigate proton interactions through Monte Carlo simulations in GATE and to use this information to reconstruct a map of the object through filtered back-projection along the most likely proton paths. Aside from the conventional energy-loss pCT, two pCT modalities have been investigated and implemented. The first one is called attenuation pCT which is carried out by using the attenuation of protons to reconstruct the linear inelastic nuclear cross-section map of the object. The second pCT modality is called scattering pCT which is performed by utilizing proton scattering by measuring the angular variance to reconstruct the relative scattering power map which is related to the radiation length of the material. The accuracy, precision and spatial resolution of the images reconstructed from the two pCT modalities were evaluated qualitatively and quantitatively and compared with the conventional energy-loss pCT. While energy-loss pCT already provides the information needed to calculate the proton range for treatment planning, attenuation pCT and scattering pCT give complementary information about the object. For one, scattering pCT and attenuation pCT images provide an additional information intrinsic to the materials in the object. Another is that, in some studied cases, attenuation pCT images demonstrate a better spatial resolution and showed features that would supplement energy-loss pCT reconstructions.
4

Development of a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle tracking / Développement d'un détecteur d'avalanche à coïncidence de silicium 3D (3D-SiCAD) pour le suivi de particules chargées

Vignetti, Matteo Maria 09 March 2017 (has links)
L’objectif de cette thèse est de développer un détecteur innovant de particules chargées, dénommé 3D Silicon Coincidence Avalanche Detector (3D-SiCAD), réalisable en technologie silicium CMOS standard avec des techniques d’intégration 3D. Son principe de fonctionnement est basé sur la détection en "coïncidence" entre deux diodes à avalanche en mode "Geiger" alignées verticalement, avec la finalité d’atteindre un niveau de bruit bien inférieur à celui de capteurs à avalanche standards, tout en gardant les avantages liés à l’utilisation de technologies CMOS; notamment la grande variété d’offres technologiques disponibles sur le marché, la possibilité d’intégrer dans un seul circuit un système complexe de détection, la facilité de migrer et mettre à jour le design vers une technologie CMOS plus moderne, et le faible de coût de fabrication. Le détecteur développé dans ce travail se révèle particulièrement adapté au domaine de la physique des particules de haute énergie ainsi qu’à la physique médicale - hadron thérapie, où des performances exigeantes sont demandées en termes de résistance aux rayonnements ionisants, "material budget", vitesse, bruit et résolution spatiale. Dans ce travail, un prototype a été conçu et fabriqué en technologie HV-CMOS 0,35µm, en utilisant un assemblage 3D de type "flip-chip" avec pour finalité de démontrer la faisabilité d’un tel détecteur. La caractérisation du prototype a finalement montré que le dispositif développé permet de détecter des particules chargées avec une excellente efficacité de détection, et que le mode "coïncidence" réduit considérablement le niveau de bruit. Ces résultats très prometteurs mettent en perspective la réalisation d’un système complet de détection CMOS basé sur ce nouveau concept. / The objective of this work is to develop a novel position sensitive charged particle detector referred to as "3D Silicon Coincidence Avalanche Detector" (3D-SiCAD). The working principle of this novel device relies on a "time-coincidence" mode detection between a pair of vertically aligned Geiger-mode avalanche diodes, with the aim of achieving negligible noise levels with respect to detectors based on conventional avalanche diodes, such as Silicon Photo-Multipliers (SiPM), and, at the same time, providing single charged particle detection capability thanks to the high charge multiplication gain, inherent of the Geiger-mode operation. A 3D-SiCAD could be particularly suitable for nuclear physics applications, in the field of High Energy Physics experiments and emerging Medical Physics applications such as hadron-therapy and Proton Computed Tomography whose future developments demand unprecedented figures in terms of material budget, noise, spatial resolution, radiation hardness, power consumption and cost-effectiveness. In this work, a 3D-SiCAD demonstrator has been successfully developed and fabricated in the Austria Micro-Systems High-Voltage 0.35 μm CMOS technology by adopting a “flip-chip” approach for the 3D-assembling. The characterization results allowed demonstrating the feasibility of this novel device and validating the expected performances in terms of excellent particle detection efficiency and noise rejection capability with respect to background counts.

Page generated in 0.0657 seconds