Spelling suggestions: "subject:"pterygota}"" "subject:"apterygota}""
1 |
Růst a vývoj hmyzích křídel v průběhu ontogeneze se zřetelem na skupinu Palaeodictyoptera / The growth and development of wings during ontogeny with emphasis on PalaeodictyopteraRosová, Kateřina January 2020 (has links)
The series of two fossil species belonging to the order Palaeodictyoptera from the Late Carboniferous of Kuznetsk Basin in Russia were re-examined. The two species as Tchirkovaea guttata and Paimbia fenestrata were investigated with emphasis on the wing growth and development in comparison with the structure of developing wings in recent mayflies. This fossil material of T. guttata and P. fenestrata was long considered by previous authors as undisputed evidence for a unique type of wing development in the Palaeozoic insects. The idea was that the larvae of these insects possessed the wings, which became articulated and fully movable already earlier during the postembryonic development and that these gradually growing wings changed their position from longitudinal to perpendicular to the body axis. Moreover, the development was supposed to include two or more subimaginal instars, implying that the fully winged instars moulted several times during postembryonic development. After detailed study of the available fossils and subsequent comparison of the fossil evidence with the development of wings in the recent mayfly Cloeon dipterum it was discovered, that the alleged series of immature, subimaginal and imaginal wings of T. guttata and P. fenestrata do not provide clear evidence that would support...
|
2 |
Evolution and phylogeny of basal winged insects with emphasis on mayflies (Ephemeroptera)Ogden, Thomas H. 29 November 2004 (has links) (PDF)
Ephemeroptera (mayflies) is a monophyletic group of semi-aquatic pterygote insects, comprising 3083 species, 376 genera, and 37 described families and are present on all continents, excluding Antarctica, being associated with freshwater and brackish water habitats. The order is unique among pterygote insects in possessing functional wings at the penultimate molt (subimago stage), prior to the full development of genitalia; in all other insects the presence of functional wings occurs only after the final molt. The purpose of this dissertation is to use molecular and morphological data, in order to investigate the position of the order Ephemeroptera among other insect orders, the higher-level relationships among the major lineages of mayflies, and a detailed analysis of the family Ephemerellidae. Ephemeroptera has been considered by many to be sister to Odonata + Neoptera although alternate hypotheses have been suggested. Data from three molecular loci ambiguously resolve basal pterygote relationships, however, total evidence analysis (combined molecular and morphological data) strongly supports the position of mayflies as sister to all other extant pterygotes. These results and methodologies were recently criticized, and, therefore, the response to the author is included following the manuscript. The phylogenetic relationships among mayfly families is debatable and in some groups unknown. Prior studies have produced phylogenies based on morphological characters mixed with intuition. The first molecular phylogeny for the Order Ephemeroptera is presented. The analyses include 31 of the 37 families, representing ~24% of the genera. The suborders Furcatergalia and Carapacea are supported as monophyletic while Setisura and Pisciforma are not supported as monophyletic. The evolution of the wings, mandibular tusks, burrowing lifestyle, and fishlike body are investigated. Topological sensitivity analysis is used as a tool to examine patterns concerning the stability of relationships across a parameter landscape, providing additional information that may not have been acquired otherwise. The Pannote family Ephemerellidae is comprised of 16 genera and over 300 species and is distinguished from other mayfly families by the absence of the second pair of abdominal gills. The position of Ephemerellidae relative to other closely related pannote mayflies is unclear as are the relationships of the genera within the family. The combined molecular and morphological analyses resulted in a monophyletic Ephemerellidae as sister to the other ephemerelloid families. The subfamily Ephemerellidae was supported as monophyletic, while Timpanoginae had conflicting results.
|
3 |
Ensuring the Safety of Classical Biological Control for Cabbage Seedpod Weevil in Canada: Assessment of the Ecological Host Range of Candidate Ectoparasitoids in Europe and Clarification of their Taxonomic Status / Ensuring the Safety of Classical Biological Control for Cabbage Seedpod Weevil in Canada: Assessment of the Ecological Host Range of Candidate Ectoparasitoids in Europe and Clarification of their Taxonomic StatusMuller, Franck 13 July 2006 (has links)
No description available.
|
4 |
Consequences of Insect Flight Loss for Molecular Evolutionary Rates and DiversificationMitterboeck, T. Fatima 25 May 2012 (has links)
This thesis investigates the molecular evolutionary and macroevolutionary consequences of flight loss in insects. Chapter 2 tests the hypothesis that flightless groups have smaller effective population sizes than related flighted groups, expected to result in a consistent pattern of increased non-synonymous to synonymous ratios in flightless lineages due to the greater effect of genetic drift in smaller populations. Chapter 3 tests the hypothesis that reduced dispersal and species-level traits such as range size associated with flightlessness increase extinction rates, which over the long term will counteract increased speciation rates in flightless lineages, leading to lower net diversification. The wide-spread loss of flight in insects has led to increased molecular evolutionary rates and is associated with decreased long-term net diversification. I demonstrate that the fundamental trait of dispersal ability has shaped two forms of diversity—molecular and species—in the largest group of animals, and that microevolutionary and macroevolutionary patterns do not necessarily mirror each other. / Generously funded by NSERC with a Canada Graduate Scholarship and the Government of Ontario with an Ontario Graduate Scholarship to T. Fatima Mitterboeck; NSERC with a Discovery Grant to Dr. Sarah J. Adamowicz
|
Page generated in 0.0486 seconds