Spelling suggestions: "subject:"quadrature rules"" "subject:"guadrature rules""
1 |
Propriedades e convergência de certas fórmulas de quadratura interpolatóriasVeronese, Daniel Oliveira [UNESP] 24 February 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-02-24Bitstream added on 2014-06-13T18:30:55Z : No. of bitstreams: 1
veronese_do_me_sjrp.pdf: 430710 bytes, checksum: 769cae2276392992bc8f2c9eaf54fd4e (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Dentre as diversas fórmulas de quadratura interpolatórias estão aquelas que utilizam em sua construção as propriedades dos polinômios ortogonais Pn, ou ainda dos polinômios similares Bn. Consideramos, aqui, fþormulas de quadratura envolvendo polinôomios em x da forma .n(x, .) = Pn-1(.)Pn(x) - Pn(.)Pn-1(x), e da forma Gn(x, u) = Bn-1(u)Bn(x) - Bn(u)Bn-1(x). Abordamos ainda certas fþormulas de quadratura que visam aproximar a integral de um produto de duas funções k e f sendo k Lebesgue integrþavel e f Riemann integrþavel. O principal objetivo deste trabalho þe analisar propriedades das fþormulas de quadratura utilizando-se .n e obter propriedades anþalogas para o caso onde utiliza-se Gn, bem como estudar o erro e as propriedades de convergência das fórmulas envolvendo k e f. Propriedades dos pesos das fórmulas de quadratura nos diversos casos são analisadas, a convergência das fórmulas associadas a k e f são estudadas mediante determinadas escolhas de pontos. / Among the many well known quadrature formulas one finds those interesting interpolatory quadrature formulas that take advantage of the properties of orthogonal polynomials Pn or similar polynomials Bn. Here, we consider the interpolatory quadrature rules based on the zeros of the polynomials øn(x, î) = Pn.1(î)Pn(x).Pn(î)Pn.1(x), and Gn(x, u) = Bn.1(u)Bn(x) . Bn(u)Bn.1(x) where î and u are arbitrary parameters. One of the objective of this dissertation is to study some of the known properties of quadrature rules based on øn(x, î) and consider the analogous properties of the quadrature rules based on Gn(x, u).We also look at the convergence properties of those quadrature rules that serve to approximate integrals of the product of functions k and f, where k is a Lebesgue integrable function and f needs to be a Riemann integrable function.
|
2 |
Propriedades e convergência de certas fórmulas de quadratura interpolatórias /Veronese, Daniel Oliveira. January 2005 (has links)
Orientador: Alagacone Sri Ranga / Banca: Sandra Augusta Santos / Banca: Cleonice Fátima Bracciali / Resumo: Dentre as diversas fórmulas de quadratura interpolatórias estão aquelas que utilizam em sua construção as propriedades dos polinômios ortogonais Pn, ou ainda dos polinômios similares Bn. Consideramos, aqui, fþormulas de quadratura envolvendo polinôomios em x da forma .n(x, .) = Pn-1(.)Pn(x) - Pn(.)Pn-1(x), e da forma Gn(x, u) = Bn-1(u)Bn(x) - Bn(u)Bn-1(x). Abordamos ainda certas fþormulas de quadratura que visam aproximar a integral de um produto de duas funções k e f sendo k Lebesgue integrþavel e f Riemann integrþavel. O principal objetivo deste trabalho þe analisar propriedades das fþormulas de quadratura utilizando-se .n e obter propriedades anþalogas para o caso onde utiliza-se Gn, bem como estudar o erro e as propriedades de convergência das fórmulas envolvendo k e f. Propriedades dos pesos das fórmulas de quadratura nos diversos casos são analisadas, a convergência das fórmulas associadas a k e f são estudadas mediante determinadas escolhas de pontos. / Abstract: Among the many well known quadrature formulas one finds those interesting interpolatory quadrature formulas that take advantage of the properties of orthogonal polynomials Pn or similar polynomials Bn. Here, we consider the interpolatory quadrature rules based on the zeros of the polynomials øn(x, î) = Pn.1(î)Pn(x).Pn(î)Pn.1(x), and Gn(x, u) = Bn.1(u)Bn(x) . Bn(u)Bn.1(x) where î and u are arbitrary parameters. One of the objective of this dissertation is to study some of the known properties of quadrature rules based on øn(x, î) and consider the analogous properties of the quadrature rules based on Gn(x, u).We also look at the convergence properties of those quadrature rules that serve to approximate integrals of the product of functions k and f, where k is a Lebesgue integrable function and f needs to be a Riemann integrable function. / Mestre
|
3 |
Standard and Rational Gauss Quadrature Rules for the Approximation of Matrix FunctionalsAlahmadi, Jihan 11 October 2021 (has links)
No description available.
|
4 |
Numerical methods for systems of highly oscillatory ordinary differential equationsKhanamiryan, Marianna January 2010 (has links)
This thesis presents methods for efficient numerical approximation of linear and non-linear systems of highly oscillatory ordinary differential equations. Phenomena of high oscillation is considered a major computational problem occurring in Fourier analysis, computational harmonic analysis, quantum mechanics, electrodynamics and fluid dynamics. Classical methods based on Gaussian quadrature fail to approximate oscillatory integrals. In this work we introduce numerical methods which share the remarkable feature that the accuracy of approximation improves as the frequency of oscillation increases. Asymptotically, our methods depend on inverse powers of the frequency of oscillation, turning the major computational problem into an advantage. Evolving ideas from the stationary phase method, we first apply the asymptotic method to solve highly oscillatory linear systems of differential equations. The asymptotic method provides a background for our next, the Filon-type method, which is highly accurate and requires computation of moments. We also introduce two novel methods. The first method, we call it the FM method, is a combination of Magnus approach and the Filon-type method, to solve matrix exponential. The second method, we call it the WRF method, a combination of the Filon-type method and the waveform relaxation methods, for solving highly oscillatory non-linear systems. Finally, completing the theory, we show that the Filon-type method can be replaced by a less accurate but moment free Levin-type method.
|
5 |
Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem / Tensor-based interpolation functions and integration rules for the high order finite elements methodsVazquez, Thais Godoy 26 February 2008 (has links)
Orientador: Marco Lucio Bittencourt / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-10T12:57:32Z (GMT). No. of bitstreams: 1
Vazquez_ThaisGodoy_D.pdf: 11719751 bytes, checksum: c6d385d6a6414705c9f468358b8d3bea (MD5)
Previous issue date: 2008 / Resumo: Este trabalho tem por objetivo principal o desenvolvimento de funções de interpolaçao e regras de integraçao tensorizaveis para o Metodo dos Elementos Finitos (MEF) de alta ordem hp, considerando os sistemas de referencias locais dos elementos. Para isso, primeiramente, determinam-se ponderaçoes especficas para as bases de funçoes de triangulos e tetraedros, formada pelo produto tensorial de polinomios de Jacobi, de forma a se obter melhor esparsidade e condicionamento das matrizes de massa e rigidez dos elementos. Alem disso, procuram-se novas funçoes de base para tornar as matrizes de massa e rigidez mais esparsas possiveis. Em seguida, escolhe-se os pontos de integraçao que otimizam o custo do calculo dos coeficientes das matrizes de massa e rigidez usando as regras de quadratura de Gauss-Jacobi, Gauss-Radau-Jacobi e Gauss-Lobatto-Jacobi. Por fim, mostra-se a construçao de uma base unidimensional nodal que permite obter uma matriz de rigidez praticamente diagonal para problemas de Poisson unidimensionais. Discute-se ainda extensoes para elementos bi e tridimensionais / Abstract: The main purpose of this work is the development of tensor-based interpolation functions and integration rules for the hp High-order Finite Element Method (FEM), considering the local reference systems of the elements. We first determine specific weights for the shape functions of triangles and tetrahedra, constructed by the tensorial product of Jacobi polynomials, aiming to obtain better sparsity and numerical conditioning for the mass and stiffness matrices of the elements. Moreover, new shape functions are proposed to obtain more sparse mass and stiffness matrices. After that, integration points are chosen that optimize the cost for the calculation of the coefficients of the mass and stiffness matrices using the rules of quadrature of Gauss-Jacobi, Gauss-Radau-Jacobi and Gauss-Lobatto-Jacobi. Finally, we construct an one-dimensional nodal shape function that obtains an almost diagonal stiffness matrix for the 1D Poisson problem. Extensions to two and three-dimensional elements are discussed. / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
|
Page generated in 0.0564 seconds