• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 21
  • 21
  • 20
  • 18
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Periodic table of ordinary and supersymmetric Sachdev-Ye-Kitaev models

Sun, Fadi 07 August 2020 (has links)
This dissertation is devoted to investigation of quantum chaos in the Sachdev-Ye-Kitaev (SYK) and supersymmetric SYK models. First, a unified minimal scheme is developed to classify quantum chaos in the SYK and supersymmetric SYK models and also work out the structure of the energy levels in one periodic table. The SYK with even q-body or supersymmetric SYK with odd q-body interaction, with N even or odd number of sites, are put on an equal footing in the minimal Hilbert space; N (mod 8), q (mod 4) double Bott periodicity, and a reflection relation are identified. Then, exact diagonalizations are performed to study both the bulk energy level statistics and hard-edge behaviors. Excellent agreements between the exact diagonalization results and the symmetry classifications are demonstrated. This compact and systematic method can be transformed to map out more complicated periodic tables of SYK models with more degrees of freedom, tensor models, or symmetry protected topological phases.
42

Estudo experimental do caos quântico com ressonadores acústicos / Experimental study of quantum chaos with acoustic resonators

Nogueira, Thiago Nascimento 14 December 2006 (has links)
Construímos um arranjo experimental para o estudo de ressonadores acústicos, que tem sido considerados como análogos clássicos de bilhares quânticos. O equipamento mantém estabilidade durante vários dias, o que é uma condição necessária para a obtenção de espectros de autofreqüências com a resolução requerida para a caracterização precisa destes sistemas. Caracterizamos 7 amostras, que são placas de alumínio com espessura < 2 mm e que possuem as seguintes geometrias: dois estádios de Sinai, com e sem dessimetrização planar; três triângulos sendo um equilátero, um retângulo e outro escaleno, este com todos os ângulos agudos e irracionais em unidades de ; além de duas amostras circulares, com e sem dessimetrização planar. Observamos que três amostras apresentam estatísticas GOE, uma 2GOE, uma semi-Poisson, uma Poisson com perda de níveis, e outra aparentemente intermediária entre a GOE e a 2GOE, que nao foi possível classificar. A qualidade dos dados também permitiu a obtenção das energias dos espectros, onde obtivemos resultados coerentes com a classificação a / We have built an experimental apparatus to study acoustic resonators which have been considered as classical analogs of quantum billiards. The equipment was able to keep the stability during several days, which is a requirement to the precise eigenfrequency measurements allowing a characterization of the systems. We have characterized 7 samples made of aluminum plates with thickness smaller than 2 mm having the following geometries: two Sinai\'s stadiums (with and without planar symmetry), an equilateral triangle, a rectangle triangle, and a scalene triangle with three acute and irrational angles, and two circular shaped samples, with and without planar symmetry. We observed that three of the samples followed the GOE statistics (the asymmetrical Sinai stadium, the rectangle triangle and the scalene one). The asymmetrical Sinai stadium was described by 2GOE statistics, the equilateral triangle by the semi-Poisson, the symmetrical circle by a Poisson with missing levels and the asymmetrical circle has statistics apparently between 1GOE and 2GOE which was not possible to classify. The high quality of data allowed us to calculate the spectra energies and we found these results compatible with the previous one.
43

Flooding of Regular Phase Space Islands by Chaotic States

Bittrich, Lars 10 December 2010 (has links) (PDF)
We investigate systems with a mixed phase space, where regular and chaotic dynamics coexist. Classically, regions with regular motion, the regular islands, are dynamically not connected to regions with chaotic motion, the chaotic sea. Typically, this is also reflected in the quantum properties, where eigenstates either concentrate on the regular or the chaotic regions. However, it was shown that quantum mechanically, due to the tunneling process, a coupling is induced and flooding of regular islands may occur. This happens when the Heisenberg time, the time needed to resolve the discrete spectrum, is larger than the tunneling time from the regular region to the chaotic sea. In this case the regular eigenstates disappear. We study this effect by the time evolution of wave packets initially started in the chaotic sea and find increasing probability in the regular island. Using random matrix models a quantitative prediction is derived. We find excellent agreement with numerical data obtained for quantum maps and billiards systems. For open systems we investigate the phenomenon of flooding and disappearance of regular states, where the escape time occurs as an additional time scale. We discuss the reappearance of regular states in the case of strongly opened systems. This is demonstrated numerically for quantum maps and experimentally for a mushroom shaped microwave resonator. The reappearance of regular states is explained qualitatively by a matrix model. / Untersucht werden Systeme mit gemischtem Phasenraum, in denen sowohl reguläre als auch chaotische Dynamik auftritt. In der klassischen Mechanik sind Gebiete regulärer Bewegung, die sogenannten regulären Inseln, dynamisch nicht mit den Gebieten chaotischer Bewegung, der chaotischen See, verbunden. Dieses Verhalten spiegelt sich typischerweise auch in den quantenmechanischen Eigenschaften wider, so dass Eigenfunktionen entweder auf chaotischen oder regulären Gebieten konzentriert sind. Es wurde jedoch gezeigt, dass aufgrund des Tunneleffektes eine Kopplung auftritt und reguläre Inseln geflutet werden können. Dies geschieht wenn die Heisenbergzeit, das heißt die Zeit die das System benötigt, um das diskrete Spektrum aufzulösen, größer als die Tunnelzeit vom Regulären ins Chaotische ist, wobei reguläre Eigenzustände verschwinden. Dieser Effekt wird über eine Zeitentwicklung von Wellenpaketen, die in der chaotischen See gestartet werden, untersucht. Es kommt zu einer ansteigenden Wahrscheinlichkeit in der regulären Insel. Mithilfe von Zufallsmatrixmodellen wird eine quantitative Vorhersage abgeleitet, welche die numerischen Daten von Quantenabbildungen und Billardsystemen hervorragend beschreibt. Der Effekt des Flutens und das Verschwinden regulärer Zustände wird ebenfalls mit offenen Systemen untersucht. Hier tritt die Fluchtzeit als zusätzliche Zeitskala auf. Das Wiederkehren regulärer Zustände im Falle stark geöffneter Systeme wird qualitativ mithilfe eines Matrixmodells erklärt und numerisch für Quantenabbildungen sowie experimentell für einen pilzförmigen Mikrowellenresonator belegt.
44

Quantum Control and Quantum Chaos in Atomic Spin Systems

Chaudhury, Souma January 2008 (has links)
Laser-cooled atoms offer an excellent platform for testing new ideas of quantum control and measurement. I will discuss experiments where we use light and magnetic fields to drive and monitor non-trivial quantum dynamics of a large spin-angular momentum associated with an atomic hyperfine ground state. We can design Hamiltonians to generate arbitrary spin states and perform a full quantum state reconstruction of the results. We have implemented and verified time optimal controls to generate a broad variety of spin states, including spin-squeezed states useful for metrology. Yields achieved are of the range 0.8-0.9.We present a first experimental demonstration of the quantum kicked top, a popular paradigm for quantum and classical chaos. We make `movies' of the evolving quantum state which provides a direct observation of phase space dynamics of this system. The spin dynamics seen in the experiment includes dynamical tunneling between regular islands, rapid spreading of states throughout the chaotic sea, and surprisingly robust signatures of classical phase space structures. Our data show differences between regular and chaotic dynamics in the sensitivity to perturbations of the quantum kicked top Hamiltonian and in the average electron-nuclear spin entanglement during the first 40 kicks. The difference, while clear, is modest due to the small size of the spin.
45

Caos e termalização na teoria de Yang-Mills-Higgs em uma rede espacial

Fariello, Ricardo Francisco [UNESP] 06 November 2009 (has links) (PDF)
Made available in DSpace on 2016-01-13T13:27:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-11-06. Added 1 bitstream(s) on 2016-01-13T13:31:35Z : No. of bitstreams: 1 000677106.pdf: 2599098 bytes, checksum: d9013a92ac254365852ffbd2bc1b8ced (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / In this thesis, we are dedicated to study the time evolution generated by the hamiltonian of a classical Yang-Mills-Higgs theory with gauge symmetry SU(2) on a spatial lattice. In particular, we study energy transfer and equilibration processes among the gauge and Higgs sectors, calculate the maximal Liapunov exponents regarding to random initial conditions in the regime of weak coupling, where one expects them to be related to the high-temperature static plasmon damping rate, and investigate their energy and Higgs self-coupling parameter dependence. We further examine finite-time and finite-size errors, value the impact of the Higgs fields on the instabilty of constant non-abelian magnetic fields and comment on the implications of our obtained results for the thermalization properties of gauge fields at finite temperature in the presence of matter.
46

Estudo experimental do caos quântico com ressonadores acústicos / Experimental study of quantum chaos with acoustic resonators

Thiago Nascimento Nogueira 14 December 2006 (has links)
Construímos um arranjo experimental para o estudo de ressonadores acústicos, que tem sido considerados como análogos clássicos de bilhares quânticos. O equipamento mantém estabilidade durante vários dias, o que é uma condição necessária para a obtenção de espectros de autofreqüências com a resolução requerida para a caracterização precisa destes sistemas. Caracterizamos 7 amostras, que são placas de alumínio com espessura < 2 mm e que possuem as seguintes geometrias: dois estádios de Sinai, com e sem dessimetrização planar; três triângulos sendo um equilátero, um retângulo e outro escaleno, este com todos os ângulos agudos e irracionais em unidades de ; além de duas amostras circulares, com e sem dessimetrização planar. Observamos que três amostras apresentam estatísticas GOE, uma 2GOE, uma semi-Poisson, uma Poisson com perda de níveis, e outra aparentemente intermediária entre a GOE e a 2GOE, que nao foi possível classificar. A qualidade dos dados também permitiu a obtenção das energias dos espectros, onde obtivemos resultados coerentes com a classificação a / We have built an experimental apparatus to study acoustic resonators which have been considered as classical analogs of quantum billiards. The equipment was able to keep the stability during several days, which is a requirement to the precise eigenfrequency measurements allowing a characterization of the systems. We have characterized 7 samples made of aluminum plates with thickness smaller than 2 mm having the following geometries: two Sinai\'s stadiums (with and without planar symmetry), an equilateral triangle, a rectangle triangle, and a scalene triangle with three acute and irrational angles, and two circular shaped samples, with and without planar symmetry. We observed that three of the samples followed the GOE statistics (the asymmetrical Sinai stadium, the rectangle triangle and the scalene one). The asymmetrical Sinai stadium was described by 2GOE statistics, the equilateral triangle by the semi-Poisson, the symmetrical circle by a Poisson with missing levels and the asymmetrical circle has statistics apparently between 1GOE and 2GOE which was not possible to classify. The high quality of data allowed us to calculate the spectra energies and we found these results compatible with the previous one.
47

Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems

Schönwetter, Moritz 17 January 2017 (has links) (PDF)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems. In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$). Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields. In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems. There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
48

Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems

Ranjan Krishna, M January 2015 (has links) (PDF)
In this thesis, we have explored the commonalities and connections between different classes of quantum systems that do not thermalize. Specifically, we have (1) shown that localized systems possess conservation laws like integrable systems, which can be constructed in a systematic way and used to detect localization-delocalization transitions , (2) studied the phenomenon of many-body localization in a model with a single particle mobility edge, (3) shown that interesting finite-size scaling emerges, with universal exponents, when athermal quantum systems are forced to thermalize through the application of perturbations and (4) shown that these scaling laws also arise when a perturbation causes a crossover between quantum systems described by different random matrix ensembles. We conclude with a brief summary of each chapter. In Chapter 2, we have investigated the effects of finite size on the crossover between quantum integrable systems and non-integrable systems. Using exact diagonalization of finite-sized systems, we have studied this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L → ∞, non-integrability sets in for an arbitrarily small integrabilitybreaking perturbation. The crossover value of the perturbation scales as a power law ∼ L−3 when the integrable system is gapless and the scaling appears to be robust to microscopic details and the precise form of the perturbation. In Chapter 3, we have studied the crossover among different random matrix ensembles CHAPTER 6. CONCLUSION 127 [Poissonian, Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE) and Gaussian Symplectic Ensemble (GSE)] realized in different microscopic models. We have found that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We have also found that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. Finally,we have conjectured that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system. In Chapter 4, we have outlined a procedure to construct conservation laws for Anderson localized systems. These conservation laws are found as power series in the hopping parameters. We have also obtained the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended depending on the strength of a coupling constant. We have formulated a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure for the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in the localized phase but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction. In Chapter 5, we have studied many body localization and investigated its nature in the presence of a single particle mobility edge. Employing the technique of exact diagonalization for finite-sized systems, we have calculated the level spacing distribution, time evolution of entanglement entropy, optical conductivity and return probability to characterize the nature of localization. The localization that develops in the presence of interactions in these systems appears to be different from regular Many-Body Localization (MBL) in that the growth of entanglement entropy with time is linear (like in CHAPTER 6. CONCLUSION 128 a thermal phase) instead of logarithmic but saturates to a value much smaller than the thermal value (like for MBL). All other diagnostics seem consistent with regular MBL
49

Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems

Schönwetter, Moritz 17 January 2017 (has links)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems. In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$). Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields. In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems. There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
50

Phase-space structure of resonance eigenfunctions for chaotic systems with escape

Clauß, Konstantin 16 June 2020 (has links)
Physical systems are usually not closed and insight about their internal structure is experimentally derived by scattering. This is efficiently described by resonance eigenfunctions of non-Hermitian quantum systems with a corresponding classical dynamics that allows for the escape of particles. For the phase-space distribution of resonance eigenfunctions in chaotic systems with partial and full escape we obtain a universal description of their semiclassical limit in terms of classical conditional invariant measures with the same decay rate. For partial escape, we introduce a family of conditionally invariant measures with arbitrary decay rates based on the hyperbolic dynamics and the natural measures of forward and backward dynamics. These measures explain the multifractal phase-space structure of resonance eigenfunctions and their dependence on the decay rate. Additionally, for the nontrivial limit of full escape we motivate the hypothesis that resonance eigenfunctions are described by conditionally invariant measures that are uniformly distributed on sets with the same temporal distance to the quantum resolved chaotic saddle. Overall we confirm quantum-to-classical correspondence for the phase-space densities, for their fractal dimensions, and by evaluating their Jensen–Shannon distance in a generic chaotic map with partial and full escape, respectively. / Typische physikalische Systeme sind nicht geschlossen, sodass ihre innere Struktur mit Hilfe von Streuexperimenten untersucht werden kann. Diese werden mit Hilfe einer nicht-Hermiteschen Quantendynamik und deren Resonanzeigenzuständen beschrieben. Die dabei zugrunde liegende klassische Dynamik berücksichtigt den Verlust von Teilchen. Für die semiklassische Phasenraumverteilung solcher Resonanzeigenzustände in chaotischen Systemen mit partieller und voller Öffnung entwickeln wir eine universelle Beschreibung mittels bedingt invarianter Maße gleicher Zerfallsrate. Für partiellen Zerfall stellen wir eine Familie bedingt invarianter Maße mit beliebiger Zerfallsrate vor, welche auf der hyperbolischen Dynamik und den natürlichen Maßen der vorwärts gerichteten und der invertierten Dynamik aufbauen. Diese Maße erklären die multifraktale Phasenraumstruktur der Resonanzzustände und deren Abhängigkeit von der Zerfallsrate. Darüber hinaus motivieren wir für den nicht trivialen Grenzfall voll geöffneter Systeme die Hypothese, dass Resonanzeigenzustände durch ein bedingt invariantes Maß beschrieben werden, welches gleichverteilt auf solchen Mengen ist, die den gleichen zeitlichen Abstand zum quantenunscharfen chaotischen Sattel haben. Insgesamt bestätigen wir die quantenklassische Korrespondenz für die Phasenraumdichten, deren fraktale Dimensionen und durch Auswertung ihres Jensen–Shannon Abstandes in einer generischen chaotischen Abbildung sowohl für partielle als auch für volle Öffnung.

Page generated in 0.1225 seconds