• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 17
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 34
  • 34
  • 30
  • 26
  • 18
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Implantation sécurisée de protocoles cryptographiques basés sur les codes correcteurs d'erreurs / Secure implementation of cryptographic protocols based on error-correcting codes

Richmond, Tania 24 October 2016 (has links)
Le premier protocole cryptographique basé sur les codes correcteurs d'erreurs a été proposé en 1978 par Robert McEliece. La cryptographie basée sur les codes est dite post-quantique car il n'existe pas à l'heure actuelle d'algorithme capable d'attaquer ce type de protocoles en temps polynomial, même en utilisant un ordinateur quantique, contrairement aux protocoles basés sur des problèmes de théorie des nombres. Toutefois, la sécurité du cryptosystème de McEliece ne repose pas uniquement sur des problèmes mathématiques. L'implantation, logicielle ou matérielle, a également un rôle très important pour sa sécurité et l'étude de celle-ci face aux attaques par canaux auxiliaires/cachés n'a débuté qu'en 2008. Des améliorations sont encore possibles. Dans cette thèse, nous proposons de nouvelles attaques sur le déchiffrement du cryptosystème de McEliece, utilisé avec les codes de Goppa classiques, ainsi que des contre-mesures correspondantes. Les attaques proposées sont des analyses de temps d'exécution ou de consommation d'énergie. Les contre-mesures associées reposent sur des propriétés mathématiques et algorithmiques. Nous montrons qu'il est essentiel de sécuriser l'algorithme de déchiffrement en le considérant dans son ensemble et non pas seulement étape par étape / The first cryptographic protocol based on error-correcting codes was proposed in 1978 by Robert McEliece. Cryptography based on codes is called post-quantum because until now, no algorithm able to attack this kind of protocols in polynomial time, even using a quantum computer, has been proposed. This is in contrast with protocols based on number theory problems like factorization of large numbers, for which efficient Shor's algorithm can be used on quantum computers. Nevertheless, the McEliece cryptosystem security is based not only on mathematical problems. Implementation (in software or hardware) is also very important for its security. Study of side-channel attacks against the McEliece cryptosystem have begun in 2008. Improvements can still be done. In this thesis, we propose new attacks against decryption in the McEliece cryptosystem, used with classical Goppa codes, including corresponding countermeasures. Proposed attacks are based on evaluation of execution time of the algorithm or its power consumption analysis. Associate countermeasures are based on mathematical and algorithmic properties of the underlying algorithm. We show that it is necessary to secure the decryption algorithm by considering it as a whole and not only step by step
92

Quantum Algorithmic Engineering with Photonic Integrated Circuits

Kallol, Roy January 2013 (has links) (PDF)
Integrated quantum photonics show monolithic waveguide chips to be a promising platform for realizing the next generation of quantum optical circuits. This work proposes the implementation of quantum page Rank algorithm on a photonic waveguide lattice. Our contributions are as follows: Continuous-time quantum stochastic walk(QSW)-an alternate paradigm of quantum computing, is a hybrid quantum walk that incorporates both unitary and non-unitary effects. We propose the use of QSW which necessitates the hopping of the quantum crawler on a directed graph, for the quantum page Rank problem. We propose the implementation of quantum page Rank on a photonic waveguide lattice, where we allow the density matrix to evolve according to the Lindblad-Kossakowski master equation, the diagonal of which gives the quantum page Rank. We have also shown the use of the metric of positional Kolmogorov Complexity as an efficient tool for determining whether or not the quantum channel has been compromised. We appositionally encode multi-photon decoy pulses within the stream of single photon pulses. This positional encoding is chosen in such a way as to have low Kolmogorov complexity. The PNS attack on the multi-photon decoy pulses causes a dip in the ratio of the transmittance of the decoy pulses to the signal pulses in the conventional analysis.
93

Quantum coin flipping and bit commitment : optimal bounds, pratical constructions and computational security / Pile-ou-face et mise-en-gage de bit quantique : bornes optimales, constructions pratiques et sécurité calculatoire

Chailloux, André 24 June 2011 (has links)
L'avènement de l'informatique quantique permet de réétudier les primitives cryptographiques avec une sécurité inconditionnelle, c'est à dire sécurisé même contre des adversaires tout puissants. En 1984, Bennett et Brassard ont construit un protocole quantique de distribution de clé. Dans ce protocole, deux joueurs Alice et Bob coopèrent pour partager une clé secrète inconnue d'une tierce personne Eve. Ce protocole a une sécurité inconditionnelle et n'a pasd'équivalent classique.Dans ma thèse, j'ai étudié les primitives cryptographiques à deux joueurs où ces joueurs ne se font pas confiance. J'étudie principalement le pile ou face quantique et la mise-en-gage quantique de bit. En informatique classique, ces primitivessont réalisables uniquement avec des hypothèses calculatoires, c'est-à-dire en supposant la difficulté d'un problème donné. Des protocoles quantiques ont été construits pour ces primitives où un adversaire peut tricher avec une probabilité constante strictement inférieure à 1, ce qui reste impossible classiquement. Néanmoins, Lo et Chau ont montré l'impossibilité de créer ces primitives parfaitement même en utilisant l'informatique quantique. Il reste donc à déterminer quelles sont les limites physiques de ces primitives.Dans une première partie, je construis un protocole quantique de pile ou face où chaque joueur peut tricher avec probabilité au plus 1/racine(2) + eps pour tout eps > 0. Ce résultat complète un résultat de Kitaev qui dit que dans un jeu de pile ou face quantique, un joueur peut toujours tricher avec probabilité au moins 1/racine(2). J'ai également construit un protocole de mise-en-gage de bit quantique optimal où un joueur peut tricher avec probabilité au plus 0,739 + eps pour tout eps > 0 puis ai montré que ce protocole est en fait optimal. Finalement, j'ai dérivé des bornes inférieures et supérieures pour une autre primitive: la transmission inconsciente, qui est une primitive universelle.Dans une deuxième partie, j'intègre certains aspects pratiques dans ces protocoles. Parfois les appareils de mesure ne donnent aucun résultat, ce sont les pertes dans la mesure. Je construis un protocole de lancer de pièce quantique tolérant aux pertes avec une probabilité de tricher de 0,859. Ensuite, j'étudie le modèle dispositif-indépendant où on ne suppose plus rien sur les appareils de mesure et de création d'état quantique.Finalement, dans une troisième partie, j'étudie ces primitives cryptographiques avec un sécurité computationnelle. En particulier, je fais le lien entre la mise en gage de bit quantique et les protocoles zero-knowledge quantiques. / Quantum computing allows us to revisit the study of quantum cryptographic primitives with information theoretic security. In 1984, Bennett and Brassard presented a protocol of quantum key distribution. In this protocol, Alice and Bob cooperate in order to share a common secret key k, which has to be unknown for a third party that has access to the communication channel. They showed how to perform this task quantumly with an information theoretic security; which is impossible classically.In my thesis, I study cryptographic primitives with two players that do not trust each other. I study mainly coin flipping and bit commitment. Classically, both these primitives are impossible classically with information theoretic security. Quantum protocols for these primitives where constructed where cheating players could cheat with probability stricly smaller than 1. However, Lo, Chau and Mayers showed that these primitives are impossible to achieve perfectly even quantumly if one requires information theoretic security. I study to what extent imperfect protocols can be done in this setting.In the first part, I construct a quantum coin flipping protocol with cheating probabitlity of 1/root(2) + eps for any eps > 0. This completes a result by Kitaev who showed that in any quantum coin flipping protocol, one of the players can cheat with probability at least 1/root(2). I also constructed a quantum bit commitment protocol with cheating probability 0.739 + eps for any eps > 0 and showed that this protocol is essentially optimal. I also derived some upper and lower bounds for quantum oblivious transfer, which is a universal cryptographic primitive.In the second part, I study some practical aspects related to these primitives. I take into account losses than can occur when measuring a quantum state. I construct a Quantum Coin Flipping and Quantum Bit Commitment protocols which are loss-tolerant and have cheating probabilities of 0.859. I also construct these primitives in the device independent model, where the players do not trust their quantum device. Finally, in the third part, I study these cryptographic primitives with information theoretic security. More precisely, I study the relationship between computational quantum bit commitment and quantum zero-knowledge protocols.
94

[pt] COMUNICAÇÕES ÓPTICAS DE ESPAÇO LIVRE POR CONTAGEM DE FÓTONS PARA USO EM ENLACES ENTRE EMBARCAÇÕES E ESTAÇÕES COSTEIRAS / [en] FREE-SPACE PHOTON COUNTING OPTICAL COMMUNICATIONS FOR USE IN VESSEL-TO-SHORE LINKS

RAFAEL FREITAS BARBOSA 23 February 2021 (has links)
[pt] Este trabalho apresenta o estudo de comunicação óptica quântica no infravermelho, utilizando um sistema híbrido fibra-óptica – espaço-livre, como prova de princípio para o estabelecimento de chaves secretas a fim de utilização em criptografia do tipo one-time pad. Ao modular a polarização da luz de um laser em polarizações ortogonais, podem-se codificar os bits clássicos 1 e 0 em cada uma dessas polarizações, sendo detectadas por detectores contadores de fótons únicos, e, assim, utilizar o canal quântico para transmissão dos bits quânticos entre dois interlocutores, utilizandoos para o estabelecimento da chave criptográfica, que pode ser usada em qualquer tipo de informação a ser transmitida por um canal clássico ou quântico. Ao realizar a transmissão em espaço-livre, sujeita a variações climáticas, como temperatura atmosférica, luz solar, presença de nuvens, chuva e vento, foi também estudada a influência destes fenômenos na qualidade da transmissão e dos dados obtidos. Os resultados experimentais demonstraram consistência com a teoria e com outros trabalhos publicados na área até esta data com relação às taxas de erro de bit quântico e também à taxa de transmissão de bits. As taxas de erro obtidas, por estarem abaixo do limiar teórico para segurança da informação em comunicação quântica, provam, ainda, a possibilidade de estabelecimento de chave secreta para criptografia através do uso de distribuição quântica das chaves (QKD). Os resultados também apresentaram boa qualidade da informação recuperada após a descriptografia. / [en] This work presents the study of optical quantum communication in the infrared region, using a hybrid optical-fiber – free-space system, as proof of principle for the agreement on secret keys by two parties for use in one-time pad encryption. By modulating the polarization of laser light into orthogonal polarizations, one can encode the classic bits 1 and 0 in each of these polarizations, being detected by single photon counter detectors, and can use the quantum channel to transmit the quantum bits between two interlocutors. It is then possible to use those bits to establish the cryptographic key, which can be used in any type of information to be transmitted by a classic or quantum channel. While carrying out transmission in free space optics, subject to climatic variations, such as atmospheric temperature, sunlight, presence of clouds and rain, and the presence of wind, the influence of these phenomena on the quality of transmission and on the data obtained was also studied. The experimental results showed consistency with the theory and with other works published to date with regard to quantum bit error rates and to the bit rate. The error rates obtained, being below the theoretical threshold for information security in quantum communication, further proves the possibility of establishing a secret key for encryption through the use of quantum key distribution (QKD). It also presented good quality on the information recovered after decryption.
95

Information-Theoretic aspects of quantum key distribution

Van Assche, Gilles 26 April 2005 (has links)
<p>La distribution quantique de clés est une technique cryptographique permettant l'échange de clés secrètes dont la confidentialité est garantie par les lois de la mécanique quantique. Le comportement particulier des particules élémentaires est exploité. En effet, en mécanique quantique, toute mesure sur l'état d'une particule modifie irrémédiablement cet état. En jouant sur cette propriété, deux parties, souvent appelées Alice et Bob, peuvent encoder une clé secrète dans des porteurs quantiques tels que des photons uniques. Toute tentative d'espionnage demande à l'espion, Eve, une mesure de l'état du photon qui transmet un bit de clé et donc se traduit par une perturbation de l'état. Alice et Bob peuvent alors se rendre compte de la présence d'Eve par un nombre inhabituel d'erreurs de transmission.</p><p><p><p>L'information échangée par la distribution quantique n'est pas directement utilisable mais doit être d'abord traitée. Les erreurs de transmissions, qu'elles soient dues à un espion ou simplement à du bruit dans le canal de communication, doivent être corrigées grâce à une technique appelée réconciliation. Ensuite, la connaissance partielle d'un espion qui n'aurait perturbé qu'une partie des porteurs doit être supprimée de la clé finale grâce à une technique dite d'amplification de confidentialité.</p><p><p><p>Cette thèse s'inscrit dans le contexte de la distribution quantique de clé où les porteurs sont des états continus de la lumière. En particulier, une partie importante de ce travail est consacrée au traitement de l'information continue échangée par un protocole particulier de distribution quantique de clés, où les porteurs sont des états cohérents de la lumière. La nature continue de cette information implique des aménagements particuliers des techniques de réconciliation, qui ont surtout été développées pour traiter l'information binaire. Nous proposons une technique dite de réconciliation en tranches qui permet de traiter efficacement l'information continue. L'ensemble des techniques développées a été utilisé en collaboration avec l'Institut d'Optique à Orsay, France, pour produire la première expérience de distribution quantique de clés au moyen d'états cohérents de la lumière modulés continuement.</p><p><p><p>D'autres aspects importants sont également traités dans cette thèse, tels que la mise en perspective de la distribution quantique de clés dans un contexte cryptographique, la spécification d'un protocole complet, la création de nouvelles techniques d'amplification de confidentialité plus rapides à mettre en œuvre ou l'étude théorique et pratique d'algorithmes alternatifs de réconciliation.</p><p><p><p>Enfin, nous étudions la sécurité du protocole à états cohérents en établissant son équivalence à un protocole de purification d'intrication. Sans entrer dans les détails, cette équivalence, formelle, permet de valider la robustesse du protocole contre tout type d'espionnage, même le plus compliqué possible, permis par les lois de la mécanique quantique. En particulier, nous généralisons l'algorithme de réconciliation en tranches pour le transformer en un protocole de purification et nous établissons ainsi un protocole de distribution quantique sûr contre toute stratégie d'espionnage.</p><p><p><p>Quantum key distribution is a cryptographic technique, which allows to exchange secret keys whose confidentiality is guaranteed by the laws of quantum mechanics. The strange behavior of elementary particles is exploited. In quantum mechnics, any measurement of the state of a particle irreversibly modifies this state. By taking advantage of this property, two parties, often called Alice and bob, can encode a secret key into quatum information carriers such as single photons. Any attempt at eavesdropping requires the spy, Eve, to measure the state of the photon and thus to perturb this state. Alice and Bob can then be aware of Eve's presence by a unusually high number of transmission errors.</p><p><p><p>The information exchanged by quantum key distribution is not directly usable but must first be processed. Transmission errors, whether they are caused by an eavesdropper or simply by noise in the transmission channel, must be corrected with a technique called reconciliation. Then, the partial knowledge of an eavesdropper, who would perturb only a fraction of the carriers, must be wiped out from the final key thanks to a technique called privacy amplification.</p><p><p><p>The context of this thesis is the quantum key distribution with continuous states of light as carriers. An important part of this work deals with the processing of continuous information exchanged by a particular protocol, where the carriers are coherent states of light. The continuous nature of information in this case implies peculiar changes to the reconciliation techniques, which have mostly been developed to process binary information. We propose a technique called sliced error correction, which allows to efficiently process continuous information. The set of the developed techniques was used in collaboration with the Institut d'Optique, Orsay, France, to set up the first experiment of quantum key distribution with continuously-modulated coherent states of light.</p><p><p><p>Other important aspects are also treated in this thesis, such as placing quantum key distribution in the context of a cryptosystem, the specification of a complete protocol, the creation of new techniques for faster privacy amplification or the theoretical and practical study of alternate reconciliation algorithms.</p><p><p><p>Finally, we study the security of the coherent state protocol by analyzing its equivalence with an entanglement purification protocol. Without going into the details, this formal equivalence allows to validate the robustness of the protocol against any kind of eavesdropping, even the most intricate one allowed by the laws of quantum mechanics. In particular, we generalize the sliced error correction algorithm so as to transform it into a purification protocol and we thus establish a quantum key distribution protocol secure against any eavesdropping strategy.</p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.056 seconds