• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 17
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 35
  • 34
  • 30
  • 26
  • 18
  • 15
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Role of Nonlocality and Counterfactuality in Quantum Cryptography

Akshatha Shenoy, H January 2014 (has links) (PDF)
Quantum cryptography is arguably the most successfully applied area of quantum information theory. In this work, We invsetigate the role of quantum indistinguishability in random number generation, quantum temporal correlations, quantum nonlocality and counterfactuality for quantum cryptography. We study quantum protocols for key distribution, and their security in the conventional setting, in the counterfactual paradigm, and finally also in the device-independent scenario as applied to prepare-and-measure schemes. We begin with the interplay of two essential non-classical features like quantum indeterminism and quantum indistinguishability via a process known as bosonic stimulation is discussed. It is observed that the process provides an efficient method for macroscopic extraction of quantum randomness. Next, we propose two counterfactual cryptographic protocols, in which a secret key bit is generated even without the physical transmission of a particle. The first protocol is semicounterfactual in the sense that only one of the key bits is generated using interaction-free measurement. This protocol departs fundamentally from the original counterfactual key distribution protocol in not encoding secret bits in terms of photon polarization. We discuss how the security in the protocol originates from quantum single-particle non-locality. The second protocol is designed for the crypto-task of certificate authorization, where a trusted third party authenticates an entity (e.g., bank) to a client. We analyze the security of both protocols under various general incoherent attack models. The next part of our work includes study of quantum temporal correlations. We consider the use of the Leggett-Garg inequalities for device-independent security appropriate for prepare-and-measure protocols subjected to the higher dimensional attack that would completely undermine standard BB84. In the last part, we introduce the novel concept of nonlocal subspaces constructed using the graph state formalism, and propose their application for quantum information splitting. In particular, we use the stabilizer formalism of graph states to construct degenerate Bell operators, whose eigenspace determines the nonlocal subspace, into which a quantum secret is encoded and shared among an authorized group of agents, or securely transmitted to a designated secret retriever. The security of our scheme arises from the monogamy of quantum correlations. The quantum violation of the Bell-type inequality here is to its algebraic maximum, making this approach inherently suitable for the device-independent scenario.
82

Information-Theoretic Aspects of Quantum Key Distribution

Van Assche, Gilles 26 April 2005 (has links)
<p>La distribution quantique de clés est une technique cryptographique permettant l'échange de clés secrètes dont la confidentialité est garantie par les lois de la mécanique quantique. Le comportement particulier des particules élémentaires est exploité. En effet, en mécanique quantique, toute mesure sur l'état d'une particule modifie irrémédiablement cet état. En jouant sur cette propriété, deux parties, souvent appelées Alice et Bob, peuvent encoder une clé secrète dans des porteurs quantiques tels que des photons uniques. Toute tentative d'espionnage demande à l'espion, Eve, une mesure de l'état du photon qui transmet un bit de clé et donc se traduit par une perturbation de l'état. Alice et Bob peuvent alors se rendre compte de la présence d'Eve par un nombre inhabituel d'erreurs de transmission.</p> <p>L'information échangée par la distribution quantique n'est pas directement utilisable mais doit être d'abord traitée. Les erreurs de transmissions, qu'elles soient dues à un espion ou simplement à du bruit dans le canal de communication, doivent être corrigées grâce à une technique appelée réconciliation. Ensuite, la connaissance partielle d'un espion qui n'aurait perturbé qu'une partie des porteurs doit être supprimée de la clé finale grâce à une technique dite d'amplification de confidentialité.</p> <p>Cette thèse s'inscrit dans le contexte de la distribution quantique de clé où les porteurs sont des états continus de la lumière. En particulier, une partie importante de ce travail est consacrée au traitement de l'information continue échangée par un protocole particulier de distribution quantique de clés, où les porteurs sont des états cohérents de la lumière. La nature continue de cette information implique des aménagements particuliers des techniques de réconciliation, qui ont surtout été développées pour traiter l'information binaire. Nous proposons une technique dite de réconciliation en tranches qui permet de traiter efficacement l'information continue. L'ensemble des techniques développées a été utilisé en collaboration avec l'Institut d'Optique à Orsay, France, pour produire la première expérience de distribution quantique de clés au moyen d'états cohérents de la lumière modulés continuement.</p> <p>D'autres aspects importants sont également traités dans cette thèse, tels que la mise en perspective de la distribution quantique de clés dans un contexte cryptographique, la spécification d'un protocole complet, la création de nouvelles techniques d'amplification de confidentialité plus rapides à mettre en œuvre ou l'étude théorique et pratique d'algorithmes alternatifs de réconciliation.</p> <p>Enfin, nous étudions la sécurité du protocole à états cohérents en établissant son équivalence à un protocole de purification d'intrication. Sans entrer dans les détails, cette équivalence, formelle, permet de valider la robustesse du protocole contre tout type d'espionnage, même le plus compliqué possible, permis par les lois de la mécanique quantique. En particulier, nous généralisons l'algorithme de réconciliation en tranches pour le transformer en un protocole de purification et nous établissons ainsi un protocole de distribution quantique sûr contre toute stratégie d'espionnage.</p> <p>Quantum key distribution is a cryptographic technique, which allows to exchange secret keys whose confidentiality is guaranteed by the laws of quantum mechanics. The strange behavior of elementary particles is exploited. In quantum mechnics, any measurement of the state of a particle irreversibly modifies this state. By taking advantage of this property, two parties, often called Alice and bob, can encode a secret key into quatum information carriers such as single photons. Any attempt at eavesdropping requires the spy, Eve, to measure the state of the photon and thus to perturb this state. Alice and Bob can then be aware of Eve's presence by a unusually high number of transmission errors.</p> <p>The information exchanged by quantum key distribution is not directly usable but must first be processed. Transmission errors, whether they are caused by an eavesdropper or simply by noise in the transmission channel, must be corrected with a technique called reconciliation. Then, the partial knowledge of an eavesdropper, who would perturb only a fraction of the carriers, must be wiped out from the final key thanks to a technique called privacy amplification.</p> <p>The context of this thesis is the quantum key distribution with continuous states of light as carriers. An important part of this work deals with the processing of continuous information exchanged by a particular protocol, where the carriers are coherent states of light. The continuous nature of information in this case implies peculiar changes to the reconciliation techniques, which have mostly been developed to process binary information. We propose a technique called sliced error correction, which allows to efficiently process continuous information. The set of the developed techniques was used in collaboration with the Institut d'Optique, Orsay, France, to set up the first experiment of quantum key distribution with continuously-modulated coherent states of light.</p> <p>Other important aspects are also treated in this thesis, such as placing quantum key distribution in the context of a cryptosystem, the specification of a complete protocol, the creation of new techniques for faster privacy amplification or the theoretical and practical study of alternate reconciliation algorithms.</p> <p>Finally, we study the security of the coherent state protocol by analyzing its equivalence with an entanglement purification protocol. Without going into the details, this formal equivalence allows to validate the robustness of the protocol against any kind of eavesdropping, even the most intricate one allowed by the laws of quantum mechanics. In particular, we generalize the sliced error correction algorithm so as to transform it into a purification protocol and we thus establish a quantum key distribution protocol secure against any eavesdropping strategy.</p>
83

Mapas de Shannon-Kotel’nikov na distribuição quântica de chaves com variáveis contínuas.

NASCIMENTO, Edmar José do. 16 May 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-05-16T23:56:29Z No. of bitstreams: 1 EDMAR JOSÉ DO NASCIMENTO – TESE (PPGEE) 2017.pdf: 1146136 bytes, checksum: 66fa0c285fd895d4aa000dd5ad1d1eef (MD5) / Made available in DSpace on 2018-05-16T23:56:29Z (GMT). No. of bitstreams: 1 EDMAR JOSÉ DO NASCIMENTO – TESE (PPGEE) 2017.pdf: 1146136 bytes, checksum: 66fa0c285fd895d4aa000dd5ad1d1eef (MD5) Previous issue date: 2018-04-18 / Protocolos para a distribuição quântica de chaves (DQC) permitem que duas partes (Alice e Bob) compartilhem uma chave secreta que pode ser usada para fins criptográficos. A segurança do protocolo é baseada em propriedades da mecânica quântica, ao invés de hipóteses computacionais. Na distribuição quântica de chaves com variáveis contínuas (DQCVC), a informação é codificada nas amplitudes de quadratura do campo eletromagnético quantizado. Quando implementado com variáveis contínuas, o aparato usado na DQC é consideravelmente mais simples que nas implementações convencionais com variáveis discretas, já que se pode utilizar a medição do tipo homódina, ao invés da detecção de fótons. Uma vez realizada a medida, ainda se faz necessária uma etapa de processamento clássico, denominada de reconciliação da informação, a fim de que Alice e Bob possam compartilhar uma cadeia comum de bits. Para que a DQCVC possa ser realizada em distâncias razoáveis (superiores a 30 km), o processo de reconciliação precisa ser feito com eficiências elevadas (superiores a 90%). Entretanto, eficiências dessa ordem para baixas SNRs (signal-to-noise ratio - razão sinal ruído) requerem o uso de códigos clássicos de comprimento bastante elevado e, assim, são difíceis de serem alcançadas. Nesta tese, se propõe o uso dos mapas de Shannon-Kotel’nikov na preparação dos estados quânticos que são usados na DQCVC. Com a utilização desses mapas, é possível aumentar a SNR entre Alice e Bob sem aumentar a variância da modulação de Alice. Dessa forma, o processo de reconciliação se torna mais simples, pois eficiências de reconciliação mais altas são mais facilmente alcançadas em SNRs maiores. Como contribuições desta tese têm-se: a proposição de um protocolo; a definição de um cenário de simulação e a análise do protocolo para dois tipos de mapas (a espiral uniforme de Arquimedes e as curvas geodésicas em um toro planar). / Quantum key distribution (QKD) protocols allow two parties, Alice and Bob, to share a secret key that may be used for cryptographic purposes. The security of QKD is based on quantum mechanics properties instead of computational assumptions. In continuous-variable quantum key distribution (CVQKD), the information is encoded in the quadrature amplitudes of the quantized electromagnetic field. When QKD is implemented with continuous variables, hardware components are much simpler than their discrete variables equivalents. This is mainly due to homodyne detection instead of photon detection. After measuring the transmitted states, it is still necessary to carry out a classical processing stage known as information reconciliation. This stage allows Alice and Bob to share a common sequence of bits. In order to deploy CVQKD over reasonable distances (over 30 km), reconciliation must be done at high efficiencies (over 90%). However, such high efficiencies for low SNRs (signal-to-noise ratio) require long length classical codes and are difficult to be reached. In this thesis, we propose to use Shannon-Kotel’nikov maps for preparing quantum states in CVQKD. By using these maps, it is possible to increase the SNR between Alice and Bob, without increasing Alice’s variance. Thus, reconciliation becomes easier because higher reconciliation efficiencies are more easily reached for higher SNRs. The contributions of this theses are: the proposal of a CVQKD protocol; the statement of a simulation scenario; the analysis of the proposed protocol for two kinds of maps (uniform Archimedes’ spiral and geodesic curves on a flat torus).
84

Secure Quantum Encryption

St-Jules, Michael January 2016 (has links)
To the field of cryptography, quantum mechanics is a game changer. The exploitation of quantum mechanical properties through the manipulation of quantum information, the information encoded in the state of quantum systems, would allow many protocols in use today to be broken as well as lead to the expansion of cryptography to new protocols. In this thesis, quantum encryption, i.e. encryption schemes for quantum data, is defined, along with several definitions of security, broadly divisible into semantic security and ciphertext indistinguishability, which are proven equivalent, in analogy to the foundational result by Goldwasser and Micali. Private- and public-key quantum encryption schemes are also constructed from quantum-secure cryptographic primitives, and their security is proven. Most of the results are in the joint paper Computational Security of Quantum Encryption, to appear in the 9th International Conference on Information Theoretic Security (ICITS2016).
85

Gaussian sampling in lattice-based cryptography / Le Gaussian sampling dans la cryptographie sur les réseaux euclidiens

Prest, Thomas 08 December 2015 (has links)
Bien que relativement récente, la cryptographie à base de réseaux euclidiens s’est distinguée sur de nombreux points, que ce soit par la richesse des constructions qu’elle permet, par sa résistance supposée à l’avènement des ordinateursquantiques ou par la rapidité dont elle fait preuve lorsqu’instanciée sur certaines classes de réseaux. Un des outils les plus puissants de la cryptographie sur les réseaux est le Gaussian sampling. À très haut niveau, il permet de prouver qu’on connaît une base particulière d’un réseau, et ce sans dévoiler la moindre information sur cette base. Il permet de réaliser une grande variété de cryptosystèmes. De manière quelque peu surprenante, on dispose de peu d’instanciations pratiques de ces schémas cryptographiques, et les algorithmes permettant d’effectuer du Gaussian sampling sont peu étudiés. Le but de cette thèse est de combler le fossé qui existe entre la théorie et la pratique du Gaussian sampling. Dans un premier temps, nous étudions et améliorons les algorithmes existants, à la fois par une analyse statistique et une approche géométrique. Puis nous exploitons les structures sous-tendant de nombreuses classes de réseaux, ce qui nous permet d’appliquer à un algorithme de Gaussian sampling les idées de la transformée de Fourier rapide, passant ainsi d’une complexité quadratique à quasilinéaire. Enfin, nous utilisons le Gaussian sampling en pratique et instancions un schéma de signature et un schéma de chiffrement basé sur l’identité. Le premierfournit des signatures qui sont les plus compactes obtenues avec les réseaux à l’heure actuelle, et le deuxième permet de chiffrer et de déchiffrer à une vitesse près de mille fois supérieure à celle obtenue en utilisant un schéma à base de couplages sur les courbes elliptiques. / Although rather recent, lattice-based cryptography has stood out on numerous points, be it by the variety of constructions that it allows, by its expected resistance to quantum computers, of by its efficiency when instantiated on some classes of lattices. One of the most powerful tools of lattice-based cryptography is Gaussian sampling. At a high level, it allows to prove the knowledge of a particular lattice basis without disclosing any information about this basis. It allows to realize a wide array of cryptosystems. Somewhat surprisingly, few practical instantiations of such schemes are realized, and the algorithms which perform Gaussian sampling are seldom studied. The goal of this thesis is to fill the gap between the theory and practice of Gaussian sampling. First, we study and improve the existing algorithms, byboth a statistical analysis and a geometrical approach. We then exploit the structures underlying many classes of lattices and apply the ideas of the fast Fourier transform to a Gaussian sampler, allowing us to reach a quasilinearcomplexity instead of quadratic. Finally, we use Gaussian sampling in practice to instantiate a signature scheme and an identity-based encryption scheme. The first one yields signatures that are the most compact currently obtained in lattice-based cryptography, and the second one allows encryption and decryption that are about one thousand times faster than those obtained with a pairing-based counterpart on elliptic curves.
86

Kryptoanalýza algoritmu post-kvantové kryptografie / Cryptoanalysis of a Post-quantum Cryptography Algorithm

Štumpf, Daniel January 2020 (has links)
National Institute of Standards and Technology (NIST) is currently running a stan- dardization process for a post-quantum cryptography primitives. Depending on the al- gorithms building blocks these primitives can be divided into five categories. In the first part of this thesis we described all five categories and compared their characteristics. The most important aspect of the schemes for NIST is security against both classical and quantum adversaries. We chose one of the five categories (namely, we picked lattice- based cryptosystems) for further cryptanalysis. As we think that the security analysis of some of the second round candidates in the NIST standardization project is not suffi- ciently well described in their specification documents and some known attacks are not considered at all, we provide a unified security analysis of these schemes. We described two currently known attacks (primal and dual attacks) against lattice-based schemes, estimated cost of these attacks against the lattice-based candidates in the second round of the NIST standardization project and compared these values with the security claimed by these candidates. In most cases our estimations matches those published in the speci- fication documents and therefore we conclude that the security estimates claimed by the candidates are...
87

[pt] CONTAGEM DE FÓTONS NO INFRAVERMELHO PRÓXIMO E MÉDIO VIA CONVERSÃO DE FREQÜÊNCIAS APLICADA A COMUNICAÇÕES QUÂNTICAS / [en] SINGLE PHOTON COUNTING IN THE NEAR- AND MID-INFRARED VIA FREQUENCY UP-CONVERSION APPLIED TO QUANTUM COMMUNICATIONS

06 September 2007 (has links)
[pt] Dois dispositivos de contagem de fótons únicos, sensíveis a comprimentos de onda no infravermelho próximo e médio, são propostos e experimentalmente investigados. Ambos utilizam uma técnica de dois estágios, composta de uma etapa inicial de conversão de freqüências em um cristal não-linear seguida de detecção por um fotodiodo avalanche de silício. Enquanto o primeiro projeto é voltado à detecção de fótons únicos a 1.55 &#956;m para comunicações quânticas via fibra óptica, usando um processo intra-cavidade, o segundo projeto prevê o desenvolvimento de um contador de fótons operando a 4.65 &#956;m para sistemas de espaço livre. Neste caso, um estudo de viabilidade para um sistema prático de criptografia quântica operando em um comprimento de onda no infravermelho médio é realizado. Os resultados mostram que, usando a tecnologia disponível na atualidade, tal sistema pode ser construído, embora sua utilidade se mostre restrita a enlaces possuindo certas condições meteorológicas específicas. / [en] Two single photon counting devices, operating at near- and mid-infrared wavelengths, are introduced and experimentally investigated. Both use a twostage technique, comprised of an initial frequency up-conversion procedure inside a nonlinear crystal followed by a silicon avalanche photodiode. Whereas the first project consists on detection of single photons at 1.55 ìm for fiber-optic-based quantum communications, using a cavity-enhanced procedure, the second project envisions the development of a single-photon counter operating at 4.65 ìm for free-space systems. In this case, a feasibility study for a practical quantum key distribution system operating in a mid-infrared wavelength is performed. The results show that, using present-day technology, such a system can be constructed, albeit its usefulness would be restricted to operation under very specific weather conditions.
88

A Side-Channel Attack on Masked and Shuffled Implementations of M-LWE and M-LWR Cryptography : A case study of Kyber and Saber / En sidokanalsattack på implementationer av M-LWE- och M-LWR-kryptografi skyddade med maskering och slumpad operationsordning : En studie av Kyber och Saber

Backlund, Linus January 2023 (has links)
In response to the threat of a future, large-scale, quantum computer, the American National Institute of Standards and Technology (NIST) initiated a competition for designs of quantum-resistant cryptographic primitives. In 2022, the lattice-based Module-Learning With Errors (M-LWE) scheme Kyber emerged as the winner to be standardized. The standardization procedure and development of secure implementations call for thorough evaluation and research. One of the main threats to implementations of cryptographic algorithms today is Side-Channel Analysis (SCA), which is the topic of this thesis. Previous work has presented successful power-based attacks on implementations of lattice cryptography protected by masking and even masking combined with shuffling. Shuffling makes SCA harder as the order of independent instructions is randomized, reducing the correlation between operations and power consumption. This randomization is commonly implemented by shuffling the order of the indexes used to iterate over a loop, using the modern Fisher-Yates algorithm. This work describes a new attack that defeats the shuffling countermeasure by first attacking the generation of the index permutation itself. The attack first recovers the positions of the first and last indexes, 0 and 255, and then rotates the encrypted messages using a ciphertext malleability applicable to many ring-based LWE schemes to shift two bits into the known positions from which they can be recovered. This procedure is repeated to recover full messages in 128 rotations. The attack is tested and evaluated on masked and shuffled implementations of Kyber as well as Saber, another similar finalist of the NIST competition which is based on the Module-Learning With Rounding (M-LWR) problem. Compared to the previous attack on masked and shuffled Saber, which required 61,680 traces, the 4,608 needed for this attack demonstrates a 13-fold improvement. / Som svar på hotet från en framtida, storskalig kvantdator initierade amerikanska National Institute of Standards and Technology (NIST) en tävling för design av kvantsäker kryptografi. Den gitter-baserade Module-Learning With Errors algoritmen Kyber valdes 2022 till vinnare och därmed till att standardiseras. Standardiseringsprocessen och utvecklingen av säkra implementationer manar till utvärderingar och forskning. Ett av de primära hoten mot implementationer av kryptografiska algoritmer är sidokanalsanalys, vilket är fokus i detta arbete. Tidigare attacker har genom effektanalys demonsterat lyckade attacker på implementationer av gitter-baserade algoritmer skyddade genom maskering samt maskering och slumpad ordning av operationer. Slumpad ordning av oberoende operationer gör sidokanalsanalys svårare då korrelationen till effektförbrukningen minskar. Denna slumpordning brukar vanligtiv implementeras genom att slumpmässigt permutera, med den moderna implementationen av Fisher-Yates, de index som används i en kodslinga. I detta arbete presenteras en ny attack som till först extraherar positionen av det första och det sista indexen, 0 och 255, innan de två motsvarande meddelandebitarna extraheras. Bitarna i meddelandet roteras till de kända positionerna med en metod för skiffertextmanipulation som är vanlig bland ring-baserade LWE-designer. Denna process upprepas 128 gånger för att få fram hela meddelandet. Attacken has testats och utvärderats på implementationer, skyddade genom maskering kombinerad med slumpad operationsordning, av både Kyber och en liknande NIST-finalist, Saber. Jämfört med den tidigare attacken på Saber med samma skyddsåtgärder minskar den nya metoden det antal mätningar som krävs från 61,608 till 4,608, vilket motsvarar en 13-falding förbättring.
89

Variations sur le protocole BB84 avec bases de polarisation secrètes

Gazaille, Shany Xiye 02 1900 (has links)
Nous naviguons présentement sur la vague de la deuxième révolution quantique qui nous dirige vers un océan de possibilités. L’approche tant attendue de l’ordinateur quantique affecte notre société, notamment la sécurité mondiale actuelle. C’est la course pour mettre à jour nos réseaux de communication pour maintenir le droit à la vie privée. En cryptographie, bien que le chiffrement de message soit crucial pour des échanges privés, la sécurité générale de toute communication repose majoritairement sur la sécurité d’une clé. C’est pourquoi l’établissement quantique de clé ou QKD (de quantum key distribution en anglais) est une importante tâche cryptographique qui se doit d’être résistante aux adversaires quantiques. Beaucoup d’avancées ont déjà été faites dans le domaine, en l’occurrence l’usage de la fibre optique qui a mené à l’implémentation réelle de protocoles QKD. Par contre, l’obstacle qui continue de limiter tout progrès est la distance. Celle-ci hausse exponentiellement les erreurs introduites dans l’échange dépassant facilement les taux maximum tolérés actuels après quelques centaines de kilomètres seulement. De ce fait, bien que la théorie semble prometteuse, la mise en pratique de protocoles quantiques demeure un défi. Pour viser l’application mondiale, nous nous devons de prioriser l’efficacité. Ce mémoire présente une variation du fameux protocole BB84 pour maximiser la perfor- mance des applications de QKD en augmentant le taux d’erreurs toléré et, en l’occurrence, la distance entre les partis. Un satellite sera introduit comme troisième parti. Il aidera Alice et Bob à partager une chaine secrète. Celle-ci leur permettra de rouler le protocole BB84 sans dévoiler les bases. De plus, deux techniques seront définies, soient le filtrage et la concentration. Ces dernières serviront lors de la communication classique interactive pour diminuer l’erreur entre nos deux individus tout en limitant le gain d’information de leur ad- versaire. Les bénéfices de cette modification sont la possibilité de recycler les bases secrètes du protocole ainsi que la possibilité d’étendre d’avantage la longueur du canal atteignant ainsi l’objectif de pousser les limites pratiques de QKD. / We are currently sailing on the second quantum revolution wave towards an ocean of pos- sibilities. The long awaited quantum computer is near and it will affect global security as we know it. It is a race against the clock to update our entire communication network to maintain the right to personal privacy. An important cryptographic task is key establish- ment. While communicating privately, the entire security lies mainly in the security of the key used. Therefore, it is crucial that future protocols for key establishment be resistant against quantum adversaries. Over the years, there has been great progress in the field like the practical use of optical fibre leading to quantum key distribution (QKD) protocols implemented in real life. Despite this, a specific obstacle still remains. Distance poses a serious problem as it increases ex- ponentially the amount of errors introduced in the protocol, meaning we easily exceed the maximum rate that we can currently tolerate after only a few hundred kilometers. Hence, what we do in theory may sound promising, but the actual application in reality remains a challenge. To aim for global use, we need to prioritize efficiency. This thesis suggests an alternative to the renowned BB84 protocol to help maximize applications of quantum key distribution by increasing the tolerated error rate and thus, the distance between two parties. A satellite will be introduced as a third party to help Alice and Bob share a secret bit sequence. This bit string will allow them to run a BB84 protocol without revealing the bases. Then, two techniques will be defined: filtering and concentration. They will serve in the classical communication phase to help lower the error rate between our two parties while also limiting the amount of information gained by the adversary. Benefits from this approach are the recycling of the secret bases of the protocol as well as the possible extension of the length of the channel, thus achieving the end goal of pushing the limits of practical implementation of QKD.
90

Protocols and components for quantum key distribution

Leifgen, Matthias 24 March 2016 (has links)
In dieser Doktorarbeit werden zwei Konzepte der Quanteninformationsverarbeitung realisiert. Der Quantenschlüsselaustausch ist revolutionär, weil er perfekte Sicherheit gewährleistet. Zahlreiche Quantenkryptografieprotokolle wurden schon untersucht. Zwei Probleme bestehen. Zum einen ist es sehr schwer, die Bedingungen herzustellen, die in den Annahmen für perfekte Sicherheit impliziert sind. Zum anderen sind die Reichweiten auf momentan etwa 200 km begrenzt, aufgrund des abnehmenden Signals gegenüber des konstanten Rauschens. Ein Experiment dieser Doktorarbeit beschäftigt sich mit dem ersten Problem. Insbesondere der übertragene Quantenzustands ist kritisch für die Sicherheit des Verfahrens. Es werden Einzelphotonen von Stickstoff- Fehlstellen-Zentren und zum ersten Mal von Silizium-Fehlstellen-Zentren für einen Quantenschlüsselaustausch mit Hilfe des BB84-Protokolls benutzt. Die Abweichung von idealen Einzelphotonenzuständen sowie deren Bedeutung für die Sicherheit werden analysiert. Die Übertragung von Quantenzuständen via Satellit könnte das Problem der begrenzten Reichweite lösen. Das neue Frequenz-Zeit- Protokoll eignet sich dafür besonders gut. Es wird während dieser Arbeit zum ersten Mal überhaupt implementiert. Umfangreiche Untersuchungen inklusive der Variation wesentlicher experimenteller Parameter geben Aufschluss über die Leistungsfähigkeit und Sicherheit des Protokolls. Außerdem werden elementare Bestandteile eines vollautomatischen Experiments zum Quantenschlüsselaustausch über Glasfasern in der sogenannten Time-bin-Implementierung mit autonomem Sender und Empfänger realisiert. Ein anderes Konzept der Quanteninformationsverarbeitung ist die Herstellung zufälliger Bitfolgen durch den Quantenzufall. Zufällige Bitfolgen haben zahlreiche Anwendungsgebiete in der Kryptografie und der Informatik. Die Realisierung eines Quantenzufallszahlengenerators mit mathematisch beschreibbarer und getesteter Zufälligkeit und hoher Bitrate wird ebenfalls beschrieben. / In this thesis, photonic quantum states are used for experimental realisations of two different concepts of quantum information processing. Quantum key distribution (QKD) is revolutionary because it is the only cryptographic scheme offering unconditional security. Two major problems prevail: Firstly, matching the conditions for unconditional security is challenging, secondly, long distance communication beyond 200 km is very demanding because an increasingly attenuated quantum state starts to fail the competition with constant noise. One experiment accomplished in this thesis is concerned with the first problem. The realisation of the actual quantum state is critical. Single photon states from nitrogen and for the first time also silicon vacancy defect centres are used for a QKD transmission under the BB84 (Bennett and Brassard 1984). The deviation of the used single photon states from the ideal state is thoroughly investigated and the information an eavesdropper obtains due to this deviation is analysed. Transmitting quantum states via satellites is a potential solution to the limited achievable distances in QKD. A novel protocol particularly suited for this is implemented for the first time in this thesis, the frequency-time (FT) protocol. The protocol is thoroughly investigated by varying the experimental parameters over a wide range and by evaluating the impact on the performance and the security. Finally, big steps towards a fully automated fibre-based BB84 QKD experiment in the time-bin implementation with autonomous sender and receiver units are accomplished. Another important concept using quantum mechanical properties as a resource is a quantum random number generator (QRNG). Random numbers are used for various applications in computing and cryptography. A QRNG supplying bits with high and quantifiable randomness at a record-breaking rate is reported and the statistical properties of the random output is thoroughly tested.

Page generated in 0.0448 seconds