• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Quantum statistics and the magnetocaloric effect

Sandberg, Anna January 2020 (has links)
Caloric materials show prospect in replacing the function of vaporcompression systems in todays cooling devices, resulting in more energy efficient cooling and eliminating the need for refrigerents which contribute to climate change. This project has focused on magnetocaloric materials, which experience changes in temperature when exposed to magnetic fields. A step to finding viable materials is developing realistic simulations. To this end, this project has investigated if the calculated magnetocaloric effect is impacted by the choice of statistic. Three systems have been studied, bcc Fe, FeRh and Fe2P, using Monte Carlo simulations. The results have shown differences in the calculated entropy change depending on the statistic of choice. The quantum statistics have shown a ∆S = 0 below the phase transition, unlike the classical statistics. At the phase tranisitions quantum statistics resulted in either similar or smaller values for the calculated change in entropy. / Kaloriska material har potential att i framtiden ersätta funktionen hos ångkomprimeringssystem i dagens kylapparater, vilket i sin tur kan leda till mer energieffektiv kylning samt eliminerar behovet av kylmedier som bidrar till klimatförändringen. I detta projekt ligger fokus på magnetokaloriska material, vilka erfar temperaturförändringar då de utsätts för magnetfält. Ett steg mot att hitta gångbara material är att utveckla realistiska simulationer. För detta ändamål undersöktes huruvida den beräknade magnetokaloriska effekten påverkas av valet av statistik. Tre system studerades, bcc Fe, FeRh samt Fe2P, med hjälp av Monte Carlo simulationer. Resultaten visade skillnader i den beräknade entropiförändringen beroende på valet av statistik. För kvantstatistiken var  ∆S = 0 för temperaturer under fasövergångerna, vilket skiljde sig från de klassiska resultaten. Vid fasövergångarna gav kvantstatistiken liknande eller mindre värden för den beräknade entropiförändringen.
22

Vortices in Josephson arrays interacting with non-classical microwaves: The effect of dissipation.

Konstadopoulou, Anastasia, Hollingworth, J.M., Everitt, M., Vourdas, Apostolos, Clark, T.D., Ralph, J.F. January 2003 (has links)
No / Vortices circulating in a ring made from a Josephson array in the insulating phase are studied. The ring contains a `dual Josephson junction' through which the vortices tunnel. External non-classical microwaves are coupled to the device. The time evolution of this two-mode fully quantum mechanical system is studied, taking into account the dissipation in the system. The effect of the quantum statistics of the photons on the quantum statistics of the vortices is discussed. Entropic calculations quantify the entanglement between the two systems. Quantum phenomena in the system are also studied through Wigner functions. After a certain time (which depends on the dissipation parameters) these quantum phenomena are destroyed due to dissipation.
23

Kinetic theory for quantum nanosystems

Esposito, Massimiliano 23 September 2004 (has links)
In this thesis, we investigate the emergence of kinetic processes in finite quantum systems. We first generalize the Redfield theory to describe the dynamics of a small quantum system weakly interacting with an environment of finite heat capacity. We then study in detail the spin-GORM model, a model made of a two-level system interacting with a random matrix environment. By doing this, we verify our new theory and find a critical size of the environment over which kinetic processes occur. We finally study the emergence of a diffusive transport process, on a finite tight-binding subsystem interacting with a fast environment, when the size of subsystem exceeds a critical value. / Doctorat en sciences, Spécialisation chimie / info:eu-repo/semantics/nonPublished
24

Tailoring non-classical states of light for applications in quantum information processing

Tschernig, Konrad 26 October 2022 (has links)
In dieser Arbeit wird das Design und die Präparation von nicht-klassischen Zuständen von Licht in verschiedenen Szenarien untersucht. Zunächst wird die theoretische Beschreibung eines Interferometers entwickelt, welches für die Messung der Teilchenaustauschphase von Photonen entworfen wurde. Die Analyse der experimentellen Daten offenbart den bosonischen Charakter von Photonen, sowie die geometrische Phase, welche mit dem physischen Austausch zweier Quantenzustände assoziiert ist. Nach dieser Feststellung der Austauschsymmetrie von Zweiphotonenzuständen folgt die Ausarbeitung der Theorie über die Propagation von Mehrphotonenzuständen in Multiportsystemen. Dabei offenbaren sich hoch-dimensionale, synthetische, gekoppelte Strukturen die sich aus der Mehrphotonenanregung von diskreten Systemen ergeben. Basierend auf diesen Resultaten wird eine konkrete Anwendung der Theorie im Kontext von nicht-hermitischen Systemen formuliert. Dabei ergeben sich sogenannte “exceptional points” höherer Ordnung, welche Anwendungen im Bereich der Sensorik finden und ferner nur im Raum der Photonenanzahlzustände von diskreten Systemen realisiert werden können. Neben der Sensorik ist der Transport von Lichtzuständen ein wichtiger Aspekt in der Verarbeitung von Quanteninformationen. In dieser Hinsicht werden hier Photonische Topologische Isolatoren untersucht, welche eine rückstreuungsfreie Propagation entlang ihrer Ränder erlauben. Es wird gezeigt, dass partiell kohärentes Licht, Gaussisch und Nicht-Gaussisch verschränkte Zweiphotonenzustände einen solchen topologischen Schutz genießen können. Dies gilt unter der Vorraussetzung, dass die Anfangsanregung in einem wohldefinierten Bereich des topologischen Schutzes liegt, wodurch das “klassische” Bandlücken-kriterium erweitert und gestärkt wird. / In this work we study the design and preparation of non-classical states of light in several scenarios. We begin by developing the theoretical description of an interferometer, which is designed to measure the particle exchange phase of photons. The analysis of the experimental data reveals the bosonic nature of photons, as well as the geometric phase associated with the physical exchange of the quantum states of two photons. Having established the exchange symmetry of two-photon states, we proceed to develop the theory of multi-photon states propagating in multi-port systems. We unveil the high- dimensional synthetic coupled structures that arise via the multi-photon excitation of discrete systems. Using these results, we formulate an application of the theory in the context of non-hermitian systems. We find so-called high-order exceptional points, which find applications in sensing and can only be achieved in the photon-number space of discrete systems. Apart from sensing, an important ingredient for the processing of quantum information is the transport of light states. In this regard, we consider photonic topological insulators, which allow the back-scattering-free propagation along their edges. We show that partially coherent light, Gaussian- as well as non-Gaussian two-photon entangled states can enjoy such a topological protection, provided that the initial excitations fit inside a well defined topological window of protection, which strengthens the “classical” band-gap protection criterion.
25

Fermions and Bosons on an Atom Chip

Extavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF , and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
26

Fermions and Bosons on an Atom Chip

Extavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF , and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
27

Isothermal quantum dynamics: Investigations for the harmonic oscillator

Mentrup, Detlef 26 May 2003 (has links)
Thermostated time evolutions are on a firm ground and widely used in classical molecular dynamics (MD) simulations. Hamilton´s equations of motion are supplemented by time-dependent pseudofriction terms that convert the microcanonical isoenergetic time evolution into a canonical isothermal time evolution, thus permitting the calculation of canonical ensemble averages by time averaging. However, similar methods for quantum MD schemes are still lacking. Given the rich dynamical behavior of ultracold trapped quantum gases depending on the value of the s-wave scattering length, it is timely to investigate how classical thermostating methods can be combined with powerful approximate quantum dynamics schemes to deal with interacting quantum systems at finite temperature. In this work, the popular method of Nose and Hoover to create canonically distributed positions and momenta in classical MD simulations is generalized to a genuine quantum system of infinite dimensionality. We show that for the quantum harmonic oscillator, the equations of motion in terms of coherent states may be modified in a Nose-Hoover manner to mimic the coupling of the system to a thermal bath and create a quantum canonical ensemble. The method is developed initially for a single particle and then generalized to the case of an arbitrary number of identical quantum particles, involving entangled distribution functions. The resulting isothermal equations of motion for bosons and fermions contain additional terms leading to Bose-attraction and Pauli-blocking, respectively. Questions of ergodicity are discussed for different coupling schemes. In the many-particle case, the superiority of the Nose-Hoover technique to a Langevin approach is demonstrated. In addition, the work contains an investigation of the Grilli-Tosatti thermostating method applied to the harmonic oscillator, and calculations for quantum wavefunctions moving with a time-invariant shape in a harmonic potential.

Page generated in 0.0936 seconds