• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • Tagged with
  • 31
  • 28
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modulação do sistema glutamatérgico : estudo dos efeitos do ácido quinolínico e dos derivados da guanina

Tavares, Rejane Giacomelli January 2005 (has links)
O aminoácido glutamato é o principal neurotransmissor excitatório do SNC de mamíferos e participa de funções importantes como cognição, memória, aprendizagem e plasticidade neuronal. Porém, excessiva estimulação dos receptores glutamatérgicos pode resultar em morte celular, processo este denominado excitotoxicidade e que está associado à processos neurodegenerativos. A remoção do glutamato da fenda sináptica, que ocorre através de transportadores dependentes de sódio de alta afinidade, localizados principalmente nos astrócitos, é o principal mecanismo modulatório das ações glutamatérgicas e responsável pela manutenção de concentrações extracelulares abaixo dos níveis neurotóxicos. O Ácido quinolínico (AQ), um agonista NMDA, é uma potente neurotoxina endógena, cujo acúmulo no cérebro parece estar envolvido na etiopatologia das convulsões. Entretanto, apesar do seu envolvimento em muitas doenças, os mecanismos moleculares e danos cerebrais ainda não são perfeitamente elucidados. Os derivados da guanina com funções extracelulares, sejam os nucleotídeos GTP, GDP ou GMP, e o nucleosídeo guanosina mostraram exercer ações tróficas em células neurais, bem como modular o sistema glutamatérgico. Os resultados demonstram que vários sistemas de transporte de glutamato são afetados pela ação do ácido quinolínico, e que os nucleotídeos da guanina podem exercer ação modulatória destas respostas. Nos estudos in vitro, o AQ estimulou a liberação de glutamato em sinaptossomas e inibiu a captação de glutamato por astrócitos. Observou-se ainda que o AQ inibiu a captação vesicular de glutamato, porém os nucleotídeos da guanina foram capazes de prevenir esta inibição, indicando uma possível modulação neste tranportador. Nos estudos in vivo, usando um modelo experimental de indução de convulsão por AQ, observou-se que a liberação sinaptossomal glutamatérgica também está estimulada, porém este efeito foi completamente abolido pela guanosina, quando este nucleosídeo foi capaz de prevenir a convulsão. AQ também estimula a captação vesicular de glutamato e inibe a captação vesicular de GABA; da mesma forma, os nucleotídeos da guanina exercem seus efeitos modulatórios, já que tanto a inibição quanto o aumento de captação retornaram aos níveis do controle quando houve prevenção da convulsão. Adicionalmente, estas alterações na captação vesicular de glutamato parecem ser relacionadas ao AQ, já que em outros modelos (picrotoxina, cainato, cafeína, PTZ ou eletrochoque transcorneal) não foram observadas alterações. Nossos resultados sugerem que os nucleotídeos da guanina exercem importante função como neuromoduladores e ainda neuroprotetores. / Glutamate is the main excitatory neurotransmitter in mammalian CNS, involved in processes such as plasticity, learning and memory, and neural development. However, an excessive glutamate receptors activation can induce intracellular events which lead to the neural death through excitotoxic events, wich are associated to the etiology of neuodegeneratives disorders. The removal of glutamate from the synaptic cleft, which occurs by high affinity of sodium-dependent transporters, located mainly in astrocyte membranes, is the major mechanism for modulating of glutamate actions, responsible for maintaining its extracellular concentrations below neurotoxic levels. Quinolinic acid (QA), an NMDA agonist, is a potent endogenous neurotoxin. Accumulation of QA in the brain seems to be involved in the ethiopatogeny of convulsions. However, in spite of its involvement in many diseases, the molecular mechanisms linking QA and brain damage are far from understood. Extracellular guanine-based purines (GBPs), namely the nucleotides GTP, GDP, GMP and the nucleoside guanosine have been shown to exert trophic effects on neural cells, as well as to modulate of the glutamatergic system. The results demonstrate that various systems of glutamate transport are affected by action of QA, and guanine nucleotides exert modulatory effect. In in vitro studies, QA stimulates glutamate release in synaptosomes and inhibits the glutamato uptake by astrocytes. We observed that QA inhibits glutamate vesicular uptake, however guanine nucleotides prevent this inhibition, indicating a possible modulation of this transporter. In in vivo studies, using a experimental model of QA-induced seizures, we observed that synaptosomal glutamate release is stimulated, and this effect was completely abolished by guanosina. QA stimulates the glutamate uptake and inhibits the GABA uptake, and guanine nucleotides exert modulatory effect, because both effects are abolished when animals not displaying seizures. Additionally, this alterations in vesicular glutamate uptake appears are related with QA, because in other models of seizure (picrotoxin, kainate, caffeine, PTZ or maximal transcorneal electroshock) we do not observed any alterations. Our results suggest that guanine nucleotides exert an important role as neuromodulators and neuroprotectors.
12

Estudos comportamentais e do metabolismo energético em ratos submetidos a modelos de acidúria glutárica tipo I

Ferreira, Gustavo da Costa January 2009 (has links)
A acidemia glutárica tipo I (AG I) é um erro inato do metabolismo causado pela deficiência severa da atividade da enzima glutaril-CoA desidrogenase. Bioquimicamente, a AG I caracteriza-se por um aumento nas concentrações dos ácidos glutárico (AG) e 3-hidróxiglutárico (3HG) nos tecidos e líquidos corporais. Os pacientes afetados por essa doença apresentam macrocefalia ao nascimento e hipomielinização ou desmielinização progressiva do córtex cerebral. Crises de descompensação metabólica com encefalopatia aguda ocorrem principalmente entre 3 e 36 meses de vida, levando a uma marcada degeneração estriatal. Após as crises, os pacientes apresentam distonia e discinesia que progridem rapidamente até espasticidade. Apesar de diversos estudos apontarem para efeitos do AG e do 3HG induzindo disfunção energética, estresse oxidativo e excitotoxicidade, os mecanismos fisiopatológicos da AG I ainda são pouco conhecidos. Por outro lado, praticamente nada foi investigado sobre o comportamento de animais submetidos a modelos de AG I. Assim, os objetivos do presente trabalho foram estabelecer um modelo químico de AG I através de injeções subcutâneas de AG em ratos durante uma fase de intenso desenvolvimento do SNC, bem como investigar os efeitos deste modelo sobre o desempenho de ratos em tarefas comportamentais e sobre parâmetros de metabolismo energético em tecidos cerebrais (córtex cerebral e cérebro médio) e músculo esquelético. Observamos que esse tratamento não teve efeito sobre o peso corporal dos animais, bem como sobre a data de aparecimento dos pelos, abertura dos olhos, erupção dos dentes incisivos ou a tarefa do endireitamento em queda livre, indicando que o desenvolvimento físico e motor dos animais não foi alterado. Verificamos também que na tarefa do labirinto aquático de Morris os animais administrados com AG permaneceram por um período de tempo significativamente menor no quadrante alvo (onde a plataforma foi inicialmente colocada), além de permanecer por mais tempo no quadrante oposto ao quadrante alvo. Além disso, os animais administrados com AG também tiveram um menor número de passagens pelo local exato da plataforma e apresentaram uma maior latência para passar pela primeira vez sobre a posição da plataforma no dia do teste, em comparação aos animais controle (administrados com solução salina). Esses resultados indicam que a administração de AG provocou um déficit na memória e no aprendizado dos ratos. Por outro lado, observamos que o comportamento dos ratos na tarefa do labirinto em cruz elevado e no campo aberto não foi alterado pela administração do AG. Em relação aos parâmetros de metabolismo energético, observamos que a administração crônica do AG inibiu significativamente as atividades dos complexos I-III e II e aumentou a atividade do complexo IV da cadeia transportadora de elétrons em músculo esquelético, sem afetar essas atividades enzimáticas nas estruturas cerebrais estudadas. Observamos ainda que a atividade do ciclo de Krebs, medida pela produção de CO2 a partir de acetato, não foi alterada pela administração crônica do AG, porém a atividade da enzima creatina quinase (CK) foi marcadamente reduzida apenas no músculo esquelético dos animais. Esses resultados indicam que a administração crônica do AG provocou um déficit energético em músculo esquelético sem afetar as estruturas cerebrais, o que pode estar relacionado com as diferentes concentrações de AG atingidas nesses tecidos. Outro objetivo deste trabalho foi investigar o efeito combinado in vitro do ácido quinolínico (AQ) que foi recentemente associado à fisiopatologia da AG I, com o AG ou o 3HG e do AG com o 3HG sobre vários parâmetros do metabolismo energético em córtex cerebral de ratos jovens. Observamos que, quando o AG, 3HG ou AQ foram testados isoladamente, ou quando AQ foi co-incubado com o AG ou o 3HG, não foram observadas alterações nos parâmetros de metabolismo energético examinados. Por outro lado, a combinação do AG com o 3HG provocou uma inibição da produção de CO2 a partir de glicose, da atividade da enzima piruvato desidrogenase e a utilização de glicose em córtex cerebral de ratos, bem como um moderado aumento na produção de lactato a partir de glicose, porém de uma forma não significativa. Finalmente, observamos que a atividade da CK, particularmente a fração mitocondrial, foi significativamente inibida pela coincubação do AG com o 3HG e que o GSH ou a combinação das enzimas catalase e superóxido dismutase preveniram totalmente a inibição dessa enzima. Concluindo, demonstramos neste trabalho que a administração crônica de AG compromete o aprendizado/memória especial e inibe o metabolismo energético em ratos jovens. Mostramos também um efeito sinérgico in vitro do AG com o 3HG, alterando vários parâmetros do metabolismo energético. / Glutaric acidemia type I (GA I) is an inborn error of metabolism caused by a deficiency in the glutaryl-CoA dehydrogenase activity. Biochemically, GA I is characterized by the accumulation of glutaric (GA) and 3-hydroxyglutaric (3HG) acids in tissue and body fluids of affected patients, which present macrocephaly at birth and a progressive demyelination of cerebral cortex. Striatal degeneration following metabolic crises is the main neurological finding in this disease, occurring between 3 and 36 months of life. After crises, dystonia and diskinesia progress quickly. Although several studies suggest neurotoxic effects for GA and 3HG inducing energy dysfunction, oxidative stress and excitotoxicity, the pathophysiology of GA I is poorly unknown. However, practically nothing has been done to investigate whether GA, the most pronounced metabolite accumulating in GA I, could provoke deficit of performance in behavioral tasks. In this scenario, the aim of the present work was to establish chemically-induced animal model of GA I by subcutaneous injections of GA during a phase of rapid CNS development. We also aimed to investigate the effects of this model on rat performance in behavioral tasks and on energy metabolism in brain tissues (cerebral cortex and midbrain) and skeletal muscle of rats. It was observed that chronic GA administration did not change the animal body weight, the date of appearance of coat, eye opening or upper incisor eruption, nor the free-fall righting task, indicating that the physical and motor development was not altered. We also verified that GA-treated animals stayed for a significantly shorter time in the target quadrant, where the platform was formerly located, and spent significantly more time in the opposite quadrant as compared to controls (injected with saline). GA-treated rats also had a lower number of correct annulus crossings and presented a higher latency to cross over the platform position than saline-treated animals. These data suggest that early chronic postnatal GA administration caused a long-standing deficit in learning and memory processes of rats. On the other hand, we observed that rat behavior in the elevated plus maze and in the open field was not affected by GA administration. With regards to energy metabolism parameters, we observed that GA treatment significantly inhibited respiratory chain complexes I-III and II and increased complex IV enzyme activity in skeletal muscle, with no effects on these enzyme activities in brain tissues. We also observed that chronic GA treatment did not modify Krebs cycle activity, as assessed by CO2 production from acetate, but markedly inhibited creatine kinase (CK) activity specifically in skeletal muscle. These data indicate that GA administration provoked energy deficit in rat skeletal muscle but not in brain structures. It is possible that this difference in GA effects is related to different GA levels reached in these tissues during the treatment. We also aimed with this work to investigate the combined in vitro effect of quinolinic acid (QA), recently associated to GA I pathophysiology, with GA or 3HG and of GA with 3HG on various parameters of energy metabolism in brain of young rats. We found that when GA, 3HG or AQ were tested isolated, or when QA was co-incubated with GA or 3HG, no alterations were found in the examined parameters. On the other hand, the combination of GA with 3HG resulted in an inhibitition of CO2 production from glucose, pyruvate dehydrogenase enzyme activity and glucose uptake from cerebral cortex, as well as in a mild increase in the lactate production, although non-significantly. Finally, it was observed that CK activity, particularly the mitochondrial fraction, was significantly inhibited by the coincubation of GA with 3HG and that GSH or the combination of catalase and superoxide dismutase enzymes were able to fully prevent this inhibition. Concluding, we here demonstrated that chronic GA administration compromises the learning/memory processes and inhibits energy metabolism in young rats. We also showed a synergic in vitro effect between GA and 3HG, leading to alterations in various parameters of energy metabolism.
13

Efeito do ácido quinolínico sobre a homeostase do citoesqueleto de cérebro de ratos jovens : ênfase nas vias de sinalização, aspectos neuroquímicos, histológicos e morfológicos do dano celular

Pierozan, Paula January 2014 (has links)
O ácido quinolínico (QUIN) é um metabólito implicado na patologia de diversas doenças neurodegenerativas, sendo que a injeção intraestriatal com QUIN é um modelo bastante utilizado para o estudo da doença de Huntington (DH). A DH envolve manifestações cognitivas, motoras e neuropsiquiátricas, sendo que a forma juvenil da doença (DHJ) tem uma progressão dos sintomas muito mais rápida e é bem menos estudada que a forma adulta. No presente trabalho desenvolvemos um modelo animal da DHJ, além de utilizarmos abordagens ex vivo e estudos in vitro com o objetivo de avaliar os efeitos do QUIN sobre a homeostase do citoesqueleto, as vias de sinalização direcionadas ao equilíbrio de fosforilação/desfosforilação dos filamentos intermediários (FI) de astrócitos e neurônios e a participação do citoesqueleto das células neurais sobre o dano celular no estriado, cortex cerebral e hipocampo de ratos jovens. Também foram avaliados parâmetros comportamentais no estudo in vivo. Para o estudo in vivo, os ratos foram submetidos a uma injeção intraestriatal de QUIN (150 nmol) ou solução salina (controles) e os parâmetros bioquímicos e comportamentais foram avaliados 1, 7, 14 e 21 dias após a injeção. Para o estudo ex vivo, foram utilizadas fatias de estriado tratadas com QUIN (100 μM) ou tampão fisiológico (controles) durante 50 min e ferramentas farmacológicas foram utilizadas para estudar as vias de sinalização envolvidas nos efeitos causados pela neurotoxina no citoesqueleto. Os estudos in vitro foram desenvolvidos utilizando astrócitos e neurônios estriatais em cultura primária, onde as células foram tratadas com QUIN (10-500 μM) ou apenas com veículo (controles) por 24 h. Os resultados mostraram que os ratos injetados com QUIN apresentaram uma diminuição da captação de glutamato e um aumento na captação de Ca2+ logo após a infusão. Estes efeitos causaram alteração na fosforilação dos FI, propagaram-se do estriado para o córtex cerebral e hipocampo e foram acompanhados de gliose reativa e neurodegeneração no estriado e córtex, mas não no hipocampo. Além disso, os animais apresentaram déficit cognitivo que precedeu as alterações motoras, o que é uma característica da DHJ. O estudo ex vivo mostrou que o QUIN causou hiperfosforilação das subunidades dos neurofilamentos (NF) e da proteína glial fibrilar ácida (GFAP), FI de neurônios e astrócitos, respectivamente. Esses efeitos foram dependentes da ativação de receptores glutamatérgicos ionotrópicos e metabotrópicos, do influxo de Ca2+ através de canais de Ca2+ dependentes de voltagem (VDCC) e da ativação de cinases dependentes e independentes de segundos mensageiros. Além disso, o estudo in vitro mostrou que a alteração da fosforilação dos FI neurais é acompanhada de reorganização do citoesqueleto neuronal e astroglial por mecanismos envolvendo Ca2+. Os efeitos sobre o citoesqueleto neuronal foram totalmente revertidos pelo meio condicionado de astrócitos tratados com QUIN. Ainda, o estudo em co-cultura astrócito/neurônio mostrou que há uma proteção recíproca contra os efeitos do QUIN. O conjunto dos nossos dados evidencia que o dano excitotóxico causado pelo QUIN, através do aumento do influxo de Ca2+ para o citoplasma, pode ser um dos principais responsáveis pela desregulação das cascatas de sinalização intracelulares direcionadas para o citoesqueleto, sendo então o citoesqueleto neural um importante alvo para as ações do QUIN no cérebro de ratos jovens. A formação de um quadro de excitotoxicidade, o rompimento da homeostase do citoesqueleto e a alteração tecidual e celular parecem ser etapas iniciais no dano causado pelo QUIN e podem estar relacionados com os déficits comportamentais observados nos animais. Acreditamos que esses resultados são relevantes para a compreensão dos mecanismos moleculares envolvidos na neurotoxicidade causada pelo QUIN em animais jovens e esperamos que a continuidade desse estudo possa contribuir ainda mais para o estudo das bases moleculares da DHJ. / Quinolinic acid (QUIN) is a neuroactive metabolite considered to be involved in neurodegenerative disorders, and the intrastriatal injection of QUIN is a commonly used model for the study of HD. The disease involves cognitive, motor and neuropsychiatric manifestations, and the juvenile form of the disease (JHD) has a more rapid progression of symptoms and is much less studied. In the present work we developed an animal model of JHD and ex vivo and in vitro approaches to evaluate the effects of QUIN on the homeostasis of the cytoskeleton, signaling pathways targeting the phosphorylation/dephosphorylation equilibrium of astrocyte and neuron intermediate filaments (IF) and the involvement of the cytoskeleton of neural cells on cell damage in the striatum, cerebral cortex and hippocampus of young rats. Behavioral parameters were also evaluated on in vivo study. For the in vivo study, rats were subjected to an instrastriatal injection of QUIN (150 nmol) or saline (controls) and the biochemical and behavioral parameters were evaluated 1, 7, 14 and 21 days after injection. For ex vivo study, striatal slices treated with QUIN (100 μM) or buffer (control) for 50 min and pharmacological approaches were used to study the signaling pathways involved in the effects caused by the neurotoxin on cytoskeleton. In vitro studies were developed using striatal neurons and astrocytes in primary culture, where cells were treated with QUIN (10-500 mM) or vehicle only (controls) for 24 h. The results showed that rats injected with QUIN showed a decrease in uptake of glutamate and increased uptake of Ca2 + after infusion. These effects caused alterations in the phosphorylation of IFs that propagated from striatum to cerebral cortex and hippocampus and were accompanied by reactive gliosis and neurodegeneration in cortex and striatum but not in hippocampus. Furthermore, the animals showed cognitive deficits that preceded motor changes, which is a characteristic of JHD. Ex vivo studies showed that QUIN caused hyperphosphorylation of neurofilament subunits (NF) and glial fibrillary acidic protein (GFAP), IF of neurons and astrocytes, respectively. These effects were dependent on the activation of ionotropic and metabotropic glutamate receptors, Ca2 + influx through voltage-dependent Ca2 + (VDCC) and the kinase-dependent and independent of activation of second messengers. Moreover, in vitro studies showed that the change in phosphorylation of neural IFs is accompanied by reorganization of the neuronal and astroglial cytoskeleton by mechanisms involving Ca2 +. The effects on the neuronal cytoskeleton were completely reversed by the conditioned medium of astrocytes treated with QUIN. Also, the study with co-cultured astrocyte-neuron showed that there is a mutual protection against the effects of QUIN. The set of our data shows that the excitotoxic damage caused by QUIN by increasing the influx of Ca2 + into the cytoplasm can be a major contributor to the misregulation of cascades of intracellular signaling directed to the cytoskeleton, making the cytoskeleton an important target for the actions of QUIN in brain of young rats. The formation of excitotoxicity, the disruption of cytoskeletal homeostasis and changes in cell tissue appear to be steps in the initial damage caused by QUIN and may be associated with behavioral deficits observed in the animals. We believe that these findings have contributed to a better understanding of the molecular mechanisms involved in the neurotoxicity caused by QUIN in young rats and we expect that the continuation of this study can contribute to the better understanding of the molecular basis of JHD.
14

Avaliação do potencial efeito protetor do probucol em modelos experimentais da doença de Huntington

Colle, Dirleise January 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas. Programa de Pós-Graduação em Bioquímica / Made available in DSpace on 2012-10-26T10:17:48Z (GMT). No. of bitstreams: 1 302705.pdf: 4398948 bytes, checksum: 367a32603d5b771ff7756b6657550df1 (MD5) / A doença de Huntington (DH) é uma patologia neurodegenerativa, autossômica dominante caracterizada por sintomas atribuídos à morte de neurônios estriatais e corticais no cérebro. O mecanismo de neurodegeneração na DH parece estar relacionado com excitotoxicidade, disfunção mitocondrial e estresse oxidativo. O probucol (PB) é um composto fenólico antilipêmico, que apresenta propriedades anti-inflamatória e antioxidante em diferentes modelos experimentais de toxicidade/patologia. O objetivo deste estudo foi investigar o possível efeito protetor do PB sobre a neurotoxicidade e estresse oxidativo em modelos experimentais de DH in vitro e in vivo. Inicialmente, foi avaliada a relação entre prejuízo no metabolismo energético, excitotoxicidade e estresse oxidativo em fatias de estriado de ratos expostas ao ácido quinolínico (AQ), ácido 3-nitropropiônico (3-NP) e ao modelo combinado (AQ + 3-NP). Os dados sugerem que os modelos utilizados podem gerar um padrão complexo de dano, que envolve comprometimento metabólico, formação de espécies reativas de oxigênio (ERO) e estresse oxidativo. O PB preveniu o estresse oxidativo nas três condições experimentais e foi capaz de proteger contra disfunção mitocondrial induzida pelo AQ e AQ + 3-NP. Além disso, o potencial efeito protetor do probucol foi avaliado sobre a neurotoxicidade do 3-NP em ratos. O pré-tratamento com probucol (por 60 dias) aumentou a atividade da glutationa peroxidase (GPx) no estriado e no córtex e preveniu o prejuízo motor e o estresse oxidativo induzido pelo 3-NP em ratos. O efeito do PB sobre a GPx e suas propriedades antioxidantes estão provavelmente associados ao seu efeito benéfico neste modelo. Também foi verificado o possível efeito protetor do succinobucol, um análogo do PB, sobre a toxicidade induzida pelo 3-NP em preparações mitocondriais de cérebro de ratos in vitro. O probucol e o succinobucol preveniram o estresse oxidativo induzido pelo 3-NP, mas apenas o succinobucol foi capaz de prevenir a disfunção mitocondrial induzida pela toxina. Juntos este resultados sugerem um novo papel para o probucol e seu análogo succinobucol como potenciais agentes neuroprotetores em modelos de DH.
15

Modulação do sistema glutamatérgico : estudo dos efeitos do ácido quinolínico e dos derivados da guanina

Tavares, Rejane Giacomelli January 2005 (has links)
O aminoácido glutamato é o principal neurotransmissor excitatório do SNC de mamíferos e participa de funções importantes como cognição, memória, aprendizagem e plasticidade neuronal. Porém, excessiva estimulação dos receptores glutamatérgicos pode resultar em morte celular, processo este denominado excitotoxicidade e que está associado à processos neurodegenerativos. A remoção do glutamato da fenda sináptica, que ocorre através de transportadores dependentes de sódio de alta afinidade, localizados principalmente nos astrócitos, é o principal mecanismo modulatório das ações glutamatérgicas e responsável pela manutenção de concentrações extracelulares abaixo dos níveis neurotóxicos. O Ácido quinolínico (AQ), um agonista NMDA, é uma potente neurotoxina endógena, cujo acúmulo no cérebro parece estar envolvido na etiopatologia das convulsões. Entretanto, apesar do seu envolvimento em muitas doenças, os mecanismos moleculares e danos cerebrais ainda não são perfeitamente elucidados. Os derivados da guanina com funções extracelulares, sejam os nucleotídeos GTP, GDP ou GMP, e o nucleosídeo guanosina mostraram exercer ações tróficas em células neurais, bem como modular o sistema glutamatérgico. Os resultados demonstram que vários sistemas de transporte de glutamato são afetados pela ação do ácido quinolínico, e que os nucleotídeos da guanina podem exercer ação modulatória destas respostas. Nos estudos in vitro, o AQ estimulou a liberação de glutamato em sinaptossomas e inibiu a captação de glutamato por astrócitos. Observou-se ainda que o AQ inibiu a captação vesicular de glutamato, porém os nucleotídeos da guanina foram capazes de prevenir esta inibição, indicando uma possível modulação neste tranportador. Nos estudos in vivo, usando um modelo experimental de indução de convulsão por AQ, observou-se que a liberação sinaptossomal glutamatérgica também está estimulada, porém este efeito foi completamente abolido pela guanosina, quando este nucleosídeo foi capaz de prevenir a convulsão. AQ também estimula a captação vesicular de glutamato e inibe a captação vesicular de GABA; da mesma forma, os nucleotídeos da guanina exercem seus efeitos modulatórios, já que tanto a inibição quanto o aumento de captação retornaram aos níveis do controle quando houve prevenção da convulsão. Adicionalmente, estas alterações na captação vesicular de glutamato parecem ser relacionadas ao AQ, já que em outros modelos (picrotoxina, cainato, cafeína, PTZ ou eletrochoque transcorneal) não foram observadas alterações. Nossos resultados sugerem que os nucleotídeos da guanina exercem importante função como neuromoduladores e ainda neuroprotetores. / Glutamate is the main excitatory neurotransmitter in mammalian CNS, involved in processes such as plasticity, learning and memory, and neural development. However, an excessive glutamate receptors activation can induce intracellular events which lead to the neural death through excitotoxic events, wich are associated to the etiology of neuodegeneratives disorders. The removal of glutamate from the synaptic cleft, which occurs by high affinity of sodium-dependent transporters, located mainly in astrocyte membranes, is the major mechanism for modulating of glutamate actions, responsible for maintaining its extracellular concentrations below neurotoxic levels. Quinolinic acid (QA), an NMDA agonist, is a potent endogenous neurotoxin. Accumulation of QA in the brain seems to be involved in the ethiopatogeny of convulsions. However, in spite of its involvement in many diseases, the molecular mechanisms linking QA and brain damage are far from understood. Extracellular guanine-based purines (GBPs), namely the nucleotides GTP, GDP, GMP and the nucleoside guanosine have been shown to exert trophic effects on neural cells, as well as to modulate of the glutamatergic system. The results demonstrate that various systems of glutamate transport are affected by action of QA, and guanine nucleotides exert modulatory effect. In in vitro studies, QA stimulates glutamate release in synaptosomes and inhibits the glutamato uptake by astrocytes. We observed that QA inhibits glutamate vesicular uptake, however guanine nucleotides prevent this inhibition, indicating a possible modulation of this transporter. In in vivo studies, using a experimental model of QA-induced seizures, we observed that synaptosomal glutamate release is stimulated, and this effect was completely abolished by guanosina. QA stimulates the glutamate uptake and inhibits the GABA uptake, and guanine nucleotides exert modulatory effect, because both effects are abolished when animals not displaying seizures. Additionally, this alterations in vesicular glutamate uptake appears are related with QA, because in other models of seizure (picrotoxin, kainate, caffeine, PTZ or maximal transcorneal electroshock) we do not observed any alterations. Our results suggest that guanine nucleotides exert an important role as neuromodulators and neuroprotectors.
16

Estudos comportamentais e do metabolismo energético em ratos submetidos a modelos de acidúria glutárica tipo I

Ferreira, Gustavo da Costa January 2009 (has links)
A acidemia glutárica tipo I (AG I) é um erro inato do metabolismo causado pela deficiência severa da atividade da enzima glutaril-CoA desidrogenase. Bioquimicamente, a AG I caracteriza-se por um aumento nas concentrações dos ácidos glutárico (AG) e 3-hidróxiglutárico (3HG) nos tecidos e líquidos corporais. Os pacientes afetados por essa doença apresentam macrocefalia ao nascimento e hipomielinização ou desmielinização progressiva do córtex cerebral. Crises de descompensação metabólica com encefalopatia aguda ocorrem principalmente entre 3 e 36 meses de vida, levando a uma marcada degeneração estriatal. Após as crises, os pacientes apresentam distonia e discinesia que progridem rapidamente até espasticidade. Apesar de diversos estudos apontarem para efeitos do AG e do 3HG induzindo disfunção energética, estresse oxidativo e excitotoxicidade, os mecanismos fisiopatológicos da AG I ainda são pouco conhecidos. Por outro lado, praticamente nada foi investigado sobre o comportamento de animais submetidos a modelos de AG I. Assim, os objetivos do presente trabalho foram estabelecer um modelo químico de AG I através de injeções subcutâneas de AG em ratos durante uma fase de intenso desenvolvimento do SNC, bem como investigar os efeitos deste modelo sobre o desempenho de ratos em tarefas comportamentais e sobre parâmetros de metabolismo energético em tecidos cerebrais (córtex cerebral e cérebro médio) e músculo esquelético. Observamos que esse tratamento não teve efeito sobre o peso corporal dos animais, bem como sobre a data de aparecimento dos pelos, abertura dos olhos, erupção dos dentes incisivos ou a tarefa do endireitamento em queda livre, indicando que o desenvolvimento físico e motor dos animais não foi alterado. Verificamos também que na tarefa do labirinto aquático de Morris os animais administrados com AG permaneceram por um período de tempo significativamente menor no quadrante alvo (onde a plataforma foi inicialmente colocada), além de permanecer por mais tempo no quadrante oposto ao quadrante alvo. Além disso, os animais administrados com AG também tiveram um menor número de passagens pelo local exato da plataforma e apresentaram uma maior latência para passar pela primeira vez sobre a posição da plataforma no dia do teste, em comparação aos animais controle (administrados com solução salina). Esses resultados indicam que a administração de AG provocou um déficit na memória e no aprendizado dos ratos. Por outro lado, observamos que o comportamento dos ratos na tarefa do labirinto em cruz elevado e no campo aberto não foi alterado pela administração do AG. Em relação aos parâmetros de metabolismo energético, observamos que a administração crônica do AG inibiu significativamente as atividades dos complexos I-III e II e aumentou a atividade do complexo IV da cadeia transportadora de elétrons em músculo esquelético, sem afetar essas atividades enzimáticas nas estruturas cerebrais estudadas. Observamos ainda que a atividade do ciclo de Krebs, medida pela produção de CO2 a partir de acetato, não foi alterada pela administração crônica do AG, porém a atividade da enzima creatina quinase (CK) foi marcadamente reduzida apenas no músculo esquelético dos animais. Esses resultados indicam que a administração crônica do AG provocou um déficit energético em músculo esquelético sem afetar as estruturas cerebrais, o que pode estar relacionado com as diferentes concentrações de AG atingidas nesses tecidos. Outro objetivo deste trabalho foi investigar o efeito combinado in vitro do ácido quinolínico (AQ) que foi recentemente associado à fisiopatologia da AG I, com o AG ou o 3HG e do AG com o 3HG sobre vários parâmetros do metabolismo energético em córtex cerebral de ratos jovens. Observamos que, quando o AG, 3HG ou AQ foram testados isoladamente, ou quando AQ foi co-incubado com o AG ou o 3HG, não foram observadas alterações nos parâmetros de metabolismo energético examinados. Por outro lado, a combinação do AG com o 3HG provocou uma inibição da produção de CO2 a partir de glicose, da atividade da enzima piruvato desidrogenase e a utilização de glicose em córtex cerebral de ratos, bem como um moderado aumento na produção de lactato a partir de glicose, porém de uma forma não significativa. Finalmente, observamos que a atividade da CK, particularmente a fração mitocondrial, foi significativamente inibida pela coincubação do AG com o 3HG e que o GSH ou a combinação das enzimas catalase e superóxido dismutase preveniram totalmente a inibição dessa enzima. Concluindo, demonstramos neste trabalho que a administração crônica de AG compromete o aprendizado/memória especial e inibe o metabolismo energético em ratos jovens. Mostramos também um efeito sinérgico in vitro do AG com o 3HG, alterando vários parâmetros do metabolismo energético. / Glutaric acidemia type I (GA I) is an inborn error of metabolism caused by a deficiency in the glutaryl-CoA dehydrogenase activity. Biochemically, GA I is characterized by the accumulation of glutaric (GA) and 3-hydroxyglutaric (3HG) acids in tissue and body fluids of affected patients, which present macrocephaly at birth and a progressive demyelination of cerebral cortex. Striatal degeneration following metabolic crises is the main neurological finding in this disease, occurring between 3 and 36 months of life. After crises, dystonia and diskinesia progress quickly. Although several studies suggest neurotoxic effects for GA and 3HG inducing energy dysfunction, oxidative stress and excitotoxicity, the pathophysiology of GA I is poorly unknown. However, practically nothing has been done to investigate whether GA, the most pronounced metabolite accumulating in GA I, could provoke deficit of performance in behavioral tasks. In this scenario, the aim of the present work was to establish chemically-induced animal model of GA I by subcutaneous injections of GA during a phase of rapid CNS development. We also aimed to investigate the effects of this model on rat performance in behavioral tasks and on energy metabolism in brain tissues (cerebral cortex and midbrain) and skeletal muscle of rats. It was observed that chronic GA administration did not change the animal body weight, the date of appearance of coat, eye opening or upper incisor eruption, nor the free-fall righting task, indicating that the physical and motor development was not altered. We also verified that GA-treated animals stayed for a significantly shorter time in the target quadrant, where the platform was formerly located, and spent significantly more time in the opposite quadrant as compared to controls (injected with saline). GA-treated rats also had a lower number of correct annulus crossings and presented a higher latency to cross over the platform position than saline-treated animals. These data suggest that early chronic postnatal GA administration caused a long-standing deficit in learning and memory processes of rats. On the other hand, we observed that rat behavior in the elevated plus maze and in the open field was not affected by GA administration. With regards to energy metabolism parameters, we observed that GA treatment significantly inhibited respiratory chain complexes I-III and II and increased complex IV enzyme activity in skeletal muscle, with no effects on these enzyme activities in brain tissues. We also observed that chronic GA treatment did not modify Krebs cycle activity, as assessed by CO2 production from acetate, but markedly inhibited creatine kinase (CK) activity specifically in skeletal muscle. These data indicate that GA administration provoked energy deficit in rat skeletal muscle but not in brain structures. It is possible that this difference in GA effects is related to different GA levels reached in these tissues during the treatment. We also aimed with this work to investigate the combined in vitro effect of quinolinic acid (QA), recently associated to GA I pathophysiology, with GA or 3HG and of GA with 3HG on various parameters of energy metabolism in brain of young rats. We found that when GA, 3HG or AQ were tested isolated, or when QA was co-incubated with GA or 3HG, no alterations were found in the examined parameters. On the other hand, the combination of GA with 3HG resulted in an inhibitition of CO2 production from glucose, pyruvate dehydrogenase enzyme activity and glucose uptake from cerebral cortex, as well as in a mild increase in the lactate production, although non-significantly. Finally, it was observed that CK activity, particularly the mitochondrial fraction, was significantly inhibited by the coincubation of GA with 3HG and that GSH or the combination of catalase and superoxide dismutase enzymes were able to fully prevent this inhibition. Concluding, we here demonstrated that chronic GA administration compromises the learning/memory processes and inhibits energy metabolism in young rats. We also showed a synergic in vitro effect between GA and 3HG, leading to alterations in various parameters of energy metabolism.
17

Efeito do ácido quinolínico sobre a homeostase do citoesqueleto de cérebro de ratos jovens : ênfase nas vias de sinalização, aspectos neuroquímicos, histológicos e morfológicos do dano celular

Pierozan, Paula January 2014 (has links)
O ácido quinolínico (QUIN) é um metabólito implicado na patologia de diversas doenças neurodegenerativas, sendo que a injeção intraestriatal com QUIN é um modelo bastante utilizado para o estudo da doença de Huntington (DH). A DH envolve manifestações cognitivas, motoras e neuropsiquiátricas, sendo que a forma juvenil da doença (DHJ) tem uma progressão dos sintomas muito mais rápida e é bem menos estudada que a forma adulta. No presente trabalho desenvolvemos um modelo animal da DHJ, além de utilizarmos abordagens ex vivo e estudos in vitro com o objetivo de avaliar os efeitos do QUIN sobre a homeostase do citoesqueleto, as vias de sinalização direcionadas ao equilíbrio de fosforilação/desfosforilação dos filamentos intermediários (FI) de astrócitos e neurônios e a participação do citoesqueleto das células neurais sobre o dano celular no estriado, cortex cerebral e hipocampo de ratos jovens. Também foram avaliados parâmetros comportamentais no estudo in vivo. Para o estudo in vivo, os ratos foram submetidos a uma injeção intraestriatal de QUIN (150 nmol) ou solução salina (controles) e os parâmetros bioquímicos e comportamentais foram avaliados 1, 7, 14 e 21 dias após a injeção. Para o estudo ex vivo, foram utilizadas fatias de estriado tratadas com QUIN (100 μM) ou tampão fisiológico (controles) durante 50 min e ferramentas farmacológicas foram utilizadas para estudar as vias de sinalização envolvidas nos efeitos causados pela neurotoxina no citoesqueleto. Os estudos in vitro foram desenvolvidos utilizando astrócitos e neurônios estriatais em cultura primária, onde as células foram tratadas com QUIN (10-500 μM) ou apenas com veículo (controles) por 24 h. Os resultados mostraram que os ratos injetados com QUIN apresentaram uma diminuição da captação de glutamato e um aumento na captação de Ca2+ logo após a infusão. Estes efeitos causaram alteração na fosforilação dos FI, propagaram-se do estriado para o córtex cerebral e hipocampo e foram acompanhados de gliose reativa e neurodegeneração no estriado e córtex, mas não no hipocampo. Além disso, os animais apresentaram déficit cognitivo que precedeu as alterações motoras, o que é uma característica da DHJ. O estudo ex vivo mostrou que o QUIN causou hiperfosforilação das subunidades dos neurofilamentos (NF) e da proteína glial fibrilar ácida (GFAP), FI de neurônios e astrócitos, respectivamente. Esses efeitos foram dependentes da ativação de receptores glutamatérgicos ionotrópicos e metabotrópicos, do influxo de Ca2+ através de canais de Ca2+ dependentes de voltagem (VDCC) e da ativação de cinases dependentes e independentes de segundos mensageiros. Além disso, o estudo in vitro mostrou que a alteração da fosforilação dos FI neurais é acompanhada de reorganização do citoesqueleto neuronal e astroglial por mecanismos envolvendo Ca2+. Os efeitos sobre o citoesqueleto neuronal foram totalmente revertidos pelo meio condicionado de astrócitos tratados com QUIN. Ainda, o estudo em co-cultura astrócito/neurônio mostrou que há uma proteção recíproca contra os efeitos do QUIN. O conjunto dos nossos dados evidencia que o dano excitotóxico causado pelo QUIN, através do aumento do influxo de Ca2+ para o citoplasma, pode ser um dos principais responsáveis pela desregulação das cascatas de sinalização intracelulares direcionadas para o citoesqueleto, sendo então o citoesqueleto neural um importante alvo para as ações do QUIN no cérebro de ratos jovens. A formação de um quadro de excitotoxicidade, o rompimento da homeostase do citoesqueleto e a alteração tecidual e celular parecem ser etapas iniciais no dano causado pelo QUIN e podem estar relacionados com os déficits comportamentais observados nos animais. Acreditamos que esses resultados são relevantes para a compreensão dos mecanismos moleculares envolvidos na neurotoxicidade causada pelo QUIN em animais jovens e esperamos que a continuidade desse estudo possa contribuir ainda mais para o estudo das bases moleculares da DHJ. / Quinolinic acid (QUIN) is a neuroactive metabolite considered to be involved in neurodegenerative disorders, and the intrastriatal injection of QUIN is a commonly used model for the study of HD. The disease involves cognitive, motor and neuropsychiatric manifestations, and the juvenile form of the disease (JHD) has a more rapid progression of symptoms and is much less studied. In the present work we developed an animal model of JHD and ex vivo and in vitro approaches to evaluate the effects of QUIN on the homeostasis of the cytoskeleton, signaling pathways targeting the phosphorylation/dephosphorylation equilibrium of astrocyte and neuron intermediate filaments (IF) and the involvement of the cytoskeleton of neural cells on cell damage in the striatum, cerebral cortex and hippocampus of young rats. Behavioral parameters were also evaluated on in vivo study. For the in vivo study, rats were subjected to an instrastriatal injection of QUIN (150 nmol) or saline (controls) and the biochemical and behavioral parameters were evaluated 1, 7, 14 and 21 days after injection. For ex vivo study, striatal slices treated with QUIN (100 μM) or buffer (control) for 50 min and pharmacological approaches were used to study the signaling pathways involved in the effects caused by the neurotoxin on cytoskeleton. In vitro studies were developed using striatal neurons and astrocytes in primary culture, where cells were treated with QUIN (10-500 mM) or vehicle only (controls) for 24 h. The results showed that rats injected with QUIN showed a decrease in uptake of glutamate and increased uptake of Ca2 + after infusion. These effects caused alterations in the phosphorylation of IFs that propagated from striatum to cerebral cortex and hippocampus and were accompanied by reactive gliosis and neurodegeneration in cortex and striatum but not in hippocampus. Furthermore, the animals showed cognitive deficits that preceded motor changes, which is a characteristic of JHD. Ex vivo studies showed that QUIN caused hyperphosphorylation of neurofilament subunits (NF) and glial fibrillary acidic protein (GFAP), IF of neurons and astrocytes, respectively. These effects were dependent on the activation of ionotropic and metabotropic glutamate receptors, Ca2 + influx through voltage-dependent Ca2 + (VDCC) and the kinase-dependent and independent of activation of second messengers. Moreover, in vitro studies showed that the change in phosphorylation of neural IFs is accompanied by reorganization of the neuronal and astroglial cytoskeleton by mechanisms involving Ca2 +. The effects on the neuronal cytoskeleton were completely reversed by the conditioned medium of astrocytes treated with QUIN. Also, the study with co-cultured astrocyte-neuron showed that there is a mutual protection against the effects of QUIN. The set of our data shows that the excitotoxic damage caused by QUIN by increasing the influx of Ca2 + into the cytoplasm can be a major contributor to the misregulation of cascades of intracellular signaling directed to the cytoskeleton, making the cytoskeleton an important target for the actions of QUIN in brain of young rats. The formation of excitotoxicity, the disruption of cytoskeletal homeostasis and changes in cell tissue appear to be steps in the initial damage caused by QUIN and may be associated with behavioral deficits observed in the animals. We believe that these findings have contributed to a better understanding of the molecular mechanisms involved in the neurotoxicity caused by QUIN in young rats and we expect that the continuation of this study can contribute to the better understanding of the molecular basis of JHD.
18

Modulação do sistema glutamatérgico : estudo dos efeitos do ácido quinolínico e dos derivados da guanina

Tavares, Rejane Giacomelli January 2005 (has links)
O aminoácido glutamato é o principal neurotransmissor excitatório do SNC de mamíferos e participa de funções importantes como cognição, memória, aprendizagem e plasticidade neuronal. Porém, excessiva estimulação dos receptores glutamatérgicos pode resultar em morte celular, processo este denominado excitotoxicidade e que está associado à processos neurodegenerativos. A remoção do glutamato da fenda sináptica, que ocorre através de transportadores dependentes de sódio de alta afinidade, localizados principalmente nos astrócitos, é o principal mecanismo modulatório das ações glutamatérgicas e responsável pela manutenção de concentrações extracelulares abaixo dos níveis neurotóxicos. O Ácido quinolínico (AQ), um agonista NMDA, é uma potente neurotoxina endógena, cujo acúmulo no cérebro parece estar envolvido na etiopatologia das convulsões. Entretanto, apesar do seu envolvimento em muitas doenças, os mecanismos moleculares e danos cerebrais ainda não são perfeitamente elucidados. Os derivados da guanina com funções extracelulares, sejam os nucleotídeos GTP, GDP ou GMP, e o nucleosídeo guanosina mostraram exercer ações tróficas em células neurais, bem como modular o sistema glutamatérgico. Os resultados demonstram que vários sistemas de transporte de glutamato são afetados pela ação do ácido quinolínico, e que os nucleotídeos da guanina podem exercer ação modulatória destas respostas. Nos estudos in vitro, o AQ estimulou a liberação de glutamato em sinaptossomas e inibiu a captação de glutamato por astrócitos. Observou-se ainda que o AQ inibiu a captação vesicular de glutamato, porém os nucleotídeos da guanina foram capazes de prevenir esta inibição, indicando uma possível modulação neste tranportador. Nos estudos in vivo, usando um modelo experimental de indução de convulsão por AQ, observou-se que a liberação sinaptossomal glutamatérgica também está estimulada, porém este efeito foi completamente abolido pela guanosina, quando este nucleosídeo foi capaz de prevenir a convulsão. AQ também estimula a captação vesicular de glutamato e inibe a captação vesicular de GABA; da mesma forma, os nucleotídeos da guanina exercem seus efeitos modulatórios, já que tanto a inibição quanto o aumento de captação retornaram aos níveis do controle quando houve prevenção da convulsão. Adicionalmente, estas alterações na captação vesicular de glutamato parecem ser relacionadas ao AQ, já que em outros modelos (picrotoxina, cainato, cafeína, PTZ ou eletrochoque transcorneal) não foram observadas alterações. Nossos resultados sugerem que os nucleotídeos da guanina exercem importante função como neuromoduladores e ainda neuroprotetores. / Glutamate is the main excitatory neurotransmitter in mammalian CNS, involved in processes such as plasticity, learning and memory, and neural development. However, an excessive glutamate receptors activation can induce intracellular events which lead to the neural death through excitotoxic events, wich are associated to the etiology of neuodegeneratives disorders. The removal of glutamate from the synaptic cleft, which occurs by high affinity of sodium-dependent transporters, located mainly in astrocyte membranes, is the major mechanism for modulating of glutamate actions, responsible for maintaining its extracellular concentrations below neurotoxic levels. Quinolinic acid (QA), an NMDA agonist, is a potent endogenous neurotoxin. Accumulation of QA in the brain seems to be involved in the ethiopatogeny of convulsions. However, in spite of its involvement in many diseases, the molecular mechanisms linking QA and brain damage are far from understood. Extracellular guanine-based purines (GBPs), namely the nucleotides GTP, GDP, GMP and the nucleoside guanosine have been shown to exert trophic effects on neural cells, as well as to modulate of the glutamatergic system. The results demonstrate that various systems of glutamate transport are affected by action of QA, and guanine nucleotides exert modulatory effect. In in vitro studies, QA stimulates glutamate release in synaptosomes and inhibits the glutamato uptake by astrocytes. We observed that QA inhibits glutamate vesicular uptake, however guanine nucleotides prevent this inhibition, indicating a possible modulation of this transporter. In in vivo studies, using a experimental model of QA-induced seizures, we observed that synaptosomal glutamate release is stimulated, and this effect was completely abolished by guanosina. QA stimulates the glutamate uptake and inhibits the GABA uptake, and guanine nucleotides exert modulatory effect, because both effects are abolished when animals not displaying seizures. Additionally, this alterations in vesicular glutamate uptake appears are related with QA, because in other models of seizure (picrotoxin, kainate, caffeine, PTZ or maximal transcorneal electroshock) we do not observed any alterations. Our results suggest that guanine nucleotides exert an important role as neuromodulators and neuroprotectors.
19

Estudos comportamentais e do metabolismo energético em ratos submetidos a modelos de acidúria glutárica tipo I

Ferreira, Gustavo da Costa January 2009 (has links)
A acidemia glutárica tipo I (AG I) é um erro inato do metabolismo causado pela deficiência severa da atividade da enzima glutaril-CoA desidrogenase. Bioquimicamente, a AG I caracteriza-se por um aumento nas concentrações dos ácidos glutárico (AG) e 3-hidróxiglutárico (3HG) nos tecidos e líquidos corporais. Os pacientes afetados por essa doença apresentam macrocefalia ao nascimento e hipomielinização ou desmielinização progressiva do córtex cerebral. Crises de descompensação metabólica com encefalopatia aguda ocorrem principalmente entre 3 e 36 meses de vida, levando a uma marcada degeneração estriatal. Após as crises, os pacientes apresentam distonia e discinesia que progridem rapidamente até espasticidade. Apesar de diversos estudos apontarem para efeitos do AG e do 3HG induzindo disfunção energética, estresse oxidativo e excitotoxicidade, os mecanismos fisiopatológicos da AG I ainda são pouco conhecidos. Por outro lado, praticamente nada foi investigado sobre o comportamento de animais submetidos a modelos de AG I. Assim, os objetivos do presente trabalho foram estabelecer um modelo químico de AG I através de injeções subcutâneas de AG em ratos durante uma fase de intenso desenvolvimento do SNC, bem como investigar os efeitos deste modelo sobre o desempenho de ratos em tarefas comportamentais e sobre parâmetros de metabolismo energético em tecidos cerebrais (córtex cerebral e cérebro médio) e músculo esquelético. Observamos que esse tratamento não teve efeito sobre o peso corporal dos animais, bem como sobre a data de aparecimento dos pelos, abertura dos olhos, erupção dos dentes incisivos ou a tarefa do endireitamento em queda livre, indicando que o desenvolvimento físico e motor dos animais não foi alterado. Verificamos também que na tarefa do labirinto aquático de Morris os animais administrados com AG permaneceram por um período de tempo significativamente menor no quadrante alvo (onde a plataforma foi inicialmente colocada), além de permanecer por mais tempo no quadrante oposto ao quadrante alvo. Além disso, os animais administrados com AG também tiveram um menor número de passagens pelo local exato da plataforma e apresentaram uma maior latência para passar pela primeira vez sobre a posição da plataforma no dia do teste, em comparação aos animais controle (administrados com solução salina). Esses resultados indicam que a administração de AG provocou um déficit na memória e no aprendizado dos ratos. Por outro lado, observamos que o comportamento dos ratos na tarefa do labirinto em cruz elevado e no campo aberto não foi alterado pela administração do AG. Em relação aos parâmetros de metabolismo energético, observamos que a administração crônica do AG inibiu significativamente as atividades dos complexos I-III e II e aumentou a atividade do complexo IV da cadeia transportadora de elétrons em músculo esquelético, sem afetar essas atividades enzimáticas nas estruturas cerebrais estudadas. Observamos ainda que a atividade do ciclo de Krebs, medida pela produção de CO2 a partir de acetato, não foi alterada pela administração crônica do AG, porém a atividade da enzima creatina quinase (CK) foi marcadamente reduzida apenas no músculo esquelético dos animais. Esses resultados indicam que a administração crônica do AG provocou um déficit energético em músculo esquelético sem afetar as estruturas cerebrais, o que pode estar relacionado com as diferentes concentrações de AG atingidas nesses tecidos. Outro objetivo deste trabalho foi investigar o efeito combinado in vitro do ácido quinolínico (AQ) que foi recentemente associado à fisiopatologia da AG I, com o AG ou o 3HG e do AG com o 3HG sobre vários parâmetros do metabolismo energético em córtex cerebral de ratos jovens. Observamos que, quando o AG, 3HG ou AQ foram testados isoladamente, ou quando AQ foi co-incubado com o AG ou o 3HG, não foram observadas alterações nos parâmetros de metabolismo energético examinados. Por outro lado, a combinação do AG com o 3HG provocou uma inibição da produção de CO2 a partir de glicose, da atividade da enzima piruvato desidrogenase e a utilização de glicose em córtex cerebral de ratos, bem como um moderado aumento na produção de lactato a partir de glicose, porém de uma forma não significativa. Finalmente, observamos que a atividade da CK, particularmente a fração mitocondrial, foi significativamente inibida pela coincubação do AG com o 3HG e que o GSH ou a combinação das enzimas catalase e superóxido dismutase preveniram totalmente a inibição dessa enzima. Concluindo, demonstramos neste trabalho que a administração crônica de AG compromete o aprendizado/memória especial e inibe o metabolismo energético em ratos jovens. Mostramos também um efeito sinérgico in vitro do AG com o 3HG, alterando vários parâmetros do metabolismo energético. / Glutaric acidemia type I (GA I) is an inborn error of metabolism caused by a deficiency in the glutaryl-CoA dehydrogenase activity. Biochemically, GA I is characterized by the accumulation of glutaric (GA) and 3-hydroxyglutaric (3HG) acids in tissue and body fluids of affected patients, which present macrocephaly at birth and a progressive demyelination of cerebral cortex. Striatal degeneration following metabolic crises is the main neurological finding in this disease, occurring between 3 and 36 months of life. After crises, dystonia and diskinesia progress quickly. Although several studies suggest neurotoxic effects for GA and 3HG inducing energy dysfunction, oxidative stress and excitotoxicity, the pathophysiology of GA I is poorly unknown. However, practically nothing has been done to investigate whether GA, the most pronounced metabolite accumulating in GA I, could provoke deficit of performance in behavioral tasks. In this scenario, the aim of the present work was to establish chemically-induced animal model of GA I by subcutaneous injections of GA during a phase of rapid CNS development. We also aimed to investigate the effects of this model on rat performance in behavioral tasks and on energy metabolism in brain tissues (cerebral cortex and midbrain) and skeletal muscle of rats. It was observed that chronic GA administration did not change the animal body weight, the date of appearance of coat, eye opening or upper incisor eruption, nor the free-fall righting task, indicating that the physical and motor development was not altered. We also verified that GA-treated animals stayed for a significantly shorter time in the target quadrant, where the platform was formerly located, and spent significantly more time in the opposite quadrant as compared to controls (injected with saline). GA-treated rats also had a lower number of correct annulus crossings and presented a higher latency to cross over the platform position than saline-treated animals. These data suggest that early chronic postnatal GA administration caused a long-standing deficit in learning and memory processes of rats. On the other hand, we observed that rat behavior in the elevated plus maze and in the open field was not affected by GA administration. With regards to energy metabolism parameters, we observed that GA treatment significantly inhibited respiratory chain complexes I-III and II and increased complex IV enzyme activity in skeletal muscle, with no effects on these enzyme activities in brain tissues. We also observed that chronic GA treatment did not modify Krebs cycle activity, as assessed by CO2 production from acetate, but markedly inhibited creatine kinase (CK) activity specifically in skeletal muscle. These data indicate that GA administration provoked energy deficit in rat skeletal muscle but not in brain structures. It is possible that this difference in GA effects is related to different GA levels reached in these tissues during the treatment. We also aimed with this work to investigate the combined in vitro effect of quinolinic acid (QA), recently associated to GA I pathophysiology, with GA or 3HG and of GA with 3HG on various parameters of energy metabolism in brain of young rats. We found that when GA, 3HG or AQ were tested isolated, or when QA was co-incubated with GA or 3HG, no alterations were found in the examined parameters. On the other hand, the combination of GA with 3HG resulted in an inhibitition of CO2 production from glucose, pyruvate dehydrogenase enzyme activity and glucose uptake from cerebral cortex, as well as in a mild increase in the lactate production, although non-significantly. Finally, it was observed that CK activity, particularly the mitochondrial fraction, was significantly inhibited by the coincubation of GA with 3HG and that GSH or the combination of catalase and superoxide dismutase enzymes were able to fully prevent this inhibition. Concluding, we here demonstrated that chronic GA administration compromises the learning/memory processes and inhibits energy metabolism in young rats. We also showed a synergic in vitro effect between GA and 3HG, leading to alterations in various parameters of energy metabolism.
20

Efeito do ácido quinolínico sobre a homeostase do citoesqueleto de cérebro de ratos jovens : ênfase nas vias de sinalização, aspectos neuroquímicos, histológicos e morfológicos do dano celular

Pierozan, Paula January 2014 (has links)
O ácido quinolínico (QUIN) é um metabólito implicado na patologia de diversas doenças neurodegenerativas, sendo que a injeção intraestriatal com QUIN é um modelo bastante utilizado para o estudo da doença de Huntington (DH). A DH envolve manifestações cognitivas, motoras e neuropsiquiátricas, sendo que a forma juvenil da doença (DHJ) tem uma progressão dos sintomas muito mais rápida e é bem menos estudada que a forma adulta. No presente trabalho desenvolvemos um modelo animal da DHJ, além de utilizarmos abordagens ex vivo e estudos in vitro com o objetivo de avaliar os efeitos do QUIN sobre a homeostase do citoesqueleto, as vias de sinalização direcionadas ao equilíbrio de fosforilação/desfosforilação dos filamentos intermediários (FI) de astrócitos e neurônios e a participação do citoesqueleto das células neurais sobre o dano celular no estriado, cortex cerebral e hipocampo de ratos jovens. Também foram avaliados parâmetros comportamentais no estudo in vivo. Para o estudo in vivo, os ratos foram submetidos a uma injeção intraestriatal de QUIN (150 nmol) ou solução salina (controles) e os parâmetros bioquímicos e comportamentais foram avaliados 1, 7, 14 e 21 dias após a injeção. Para o estudo ex vivo, foram utilizadas fatias de estriado tratadas com QUIN (100 μM) ou tampão fisiológico (controles) durante 50 min e ferramentas farmacológicas foram utilizadas para estudar as vias de sinalização envolvidas nos efeitos causados pela neurotoxina no citoesqueleto. Os estudos in vitro foram desenvolvidos utilizando astrócitos e neurônios estriatais em cultura primária, onde as células foram tratadas com QUIN (10-500 μM) ou apenas com veículo (controles) por 24 h. Os resultados mostraram que os ratos injetados com QUIN apresentaram uma diminuição da captação de glutamato e um aumento na captação de Ca2+ logo após a infusão. Estes efeitos causaram alteração na fosforilação dos FI, propagaram-se do estriado para o córtex cerebral e hipocampo e foram acompanhados de gliose reativa e neurodegeneração no estriado e córtex, mas não no hipocampo. Além disso, os animais apresentaram déficit cognitivo que precedeu as alterações motoras, o que é uma característica da DHJ. O estudo ex vivo mostrou que o QUIN causou hiperfosforilação das subunidades dos neurofilamentos (NF) e da proteína glial fibrilar ácida (GFAP), FI de neurônios e astrócitos, respectivamente. Esses efeitos foram dependentes da ativação de receptores glutamatérgicos ionotrópicos e metabotrópicos, do influxo de Ca2+ através de canais de Ca2+ dependentes de voltagem (VDCC) e da ativação de cinases dependentes e independentes de segundos mensageiros. Além disso, o estudo in vitro mostrou que a alteração da fosforilação dos FI neurais é acompanhada de reorganização do citoesqueleto neuronal e astroglial por mecanismos envolvendo Ca2+. Os efeitos sobre o citoesqueleto neuronal foram totalmente revertidos pelo meio condicionado de astrócitos tratados com QUIN. Ainda, o estudo em co-cultura astrócito/neurônio mostrou que há uma proteção recíproca contra os efeitos do QUIN. O conjunto dos nossos dados evidencia que o dano excitotóxico causado pelo QUIN, através do aumento do influxo de Ca2+ para o citoplasma, pode ser um dos principais responsáveis pela desregulação das cascatas de sinalização intracelulares direcionadas para o citoesqueleto, sendo então o citoesqueleto neural um importante alvo para as ações do QUIN no cérebro de ratos jovens. A formação de um quadro de excitotoxicidade, o rompimento da homeostase do citoesqueleto e a alteração tecidual e celular parecem ser etapas iniciais no dano causado pelo QUIN e podem estar relacionados com os déficits comportamentais observados nos animais. Acreditamos que esses resultados são relevantes para a compreensão dos mecanismos moleculares envolvidos na neurotoxicidade causada pelo QUIN em animais jovens e esperamos que a continuidade desse estudo possa contribuir ainda mais para o estudo das bases moleculares da DHJ. / Quinolinic acid (QUIN) is a neuroactive metabolite considered to be involved in neurodegenerative disorders, and the intrastriatal injection of QUIN is a commonly used model for the study of HD. The disease involves cognitive, motor and neuropsychiatric manifestations, and the juvenile form of the disease (JHD) has a more rapid progression of symptoms and is much less studied. In the present work we developed an animal model of JHD and ex vivo and in vitro approaches to evaluate the effects of QUIN on the homeostasis of the cytoskeleton, signaling pathways targeting the phosphorylation/dephosphorylation equilibrium of astrocyte and neuron intermediate filaments (IF) and the involvement of the cytoskeleton of neural cells on cell damage in the striatum, cerebral cortex and hippocampus of young rats. Behavioral parameters were also evaluated on in vivo study. For the in vivo study, rats were subjected to an instrastriatal injection of QUIN (150 nmol) or saline (controls) and the biochemical and behavioral parameters were evaluated 1, 7, 14 and 21 days after injection. For ex vivo study, striatal slices treated with QUIN (100 μM) or buffer (control) for 50 min and pharmacological approaches were used to study the signaling pathways involved in the effects caused by the neurotoxin on cytoskeleton. In vitro studies were developed using striatal neurons and astrocytes in primary culture, where cells were treated with QUIN (10-500 mM) or vehicle only (controls) for 24 h. The results showed that rats injected with QUIN showed a decrease in uptake of glutamate and increased uptake of Ca2 + after infusion. These effects caused alterations in the phosphorylation of IFs that propagated from striatum to cerebral cortex and hippocampus and were accompanied by reactive gliosis and neurodegeneration in cortex and striatum but not in hippocampus. Furthermore, the animals showed cognitive deficits that preceded motor changes, which is a characteristic of JHD. Ex vivo studies showed that QUIN caused hyperphosphorylation of neurofilament subunits (NF) and glial fibrillary acidic protein (GFAP), IF of neurons and astrocytes, respectively. These effects were dependent on the activation of ionotropic and metabotropic glutamate receptors, Ca2 + influx through voltage-dependent Ca2 + (VDCC) and the kinase-dependent and independent of activation of second messengers. Moreover, in vitro studies showed that the change in phosphorylation of neural IFs is accompanied by reorganization of the neuronal and astroglial cytoskeleton by mechanisms involving Ca2 +. The effects on the neuronal cytoskeleton were completely reversed by the conditioned medium of astrocytes treated with QUIN. Also, the study with co-cultured astrocyte-neuron showed that there is a mutual protection against the effects of QUIN. The set of our data shows that the excitotoxic damage caused by QUIN by increasing the influx of Ca2 + into the cytoplasm can be a major contributor to the misregulation of cascades of intracellular signaling directed to the cytoskeleton, making the cytoskeleton an important target for the actions of QUIN in brain of young rats. The formation of excitotoxicity, the disruption of cytoskeletal homeostasis and changes in cell tissue appear to be steps in the initial damage caused by QUIN and may be associated with behavioral deficits observed in the animals. We believe that these findings have contributed to a better understanding of the molecular mechanisms involved in the neurotoxicity caused by QUIN in young rats and we expect that the continuation of this study can contribute to the better understanding of the molecular basis of JHD.

Page generated in 0.0972 seconds