• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 12
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Augmentation of the differentiation response to antitumor quinolines

Rahim-Bata, Rayhana. January 2004 (has links)
Thesis (Ph. D.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xiii, 152 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 141-149).
12

Design, synthesis and biological evaluation of novel tetrasubstituted quinoline-3-carboxamides derivatives

Hlungwani, Isaac 24 March 2020 (has links)
MSc (Chemistry) / Department of Chemistry / Quinolines are well known naturally occurring heterocyclic compounds with nitrogen as a heteroatom. Quinolines are also one of the major classes of naturally occurring compounds and the interest in their chemistry is due to the wide range of their biological activities. The objective of the project was the synthesis of novel tetra-substituted quinoline-3carboxamides and subsequent transformation to other novel derivatives and evaluation of their biological activities against malaria and cytotoxicity. In achieving the objective, 2-chloroquinoline-3-carbaldehyde analogues 54A-G were synthesised from the reaction of acetanilides 53A-G and acetic acid. Knoevenagal reaction of 2chloroquinoline-3-carbaldehydes 54A-G with thiazolidinedi-2,4-one 62 provided 2chloroquinoline-3-methylene thiazolidinedi-2,4-one 55A-G which then underwent nucleophilic substitution reaction with sodium azide and afforded (Z)-5-((tetrazolo [1,5a] quinoline-4-yl) methylene) thiazolidinedi-2,4-one 56A-F. (Z)-ethyl-2-(2-5-((7bromotetrazolo [1,5a] quinolin-4-yl) methylene-2,4-dioxothiazolidin-3-yl) acetamido) acetate 57 was synthesised from the reaction of (Z)-5-((7-bromotetrazolo [1,5a] quinoline-4-yl) methylene) thiazolidinedi-2,4-one 56D and ethyl-2-(2-chloroacetamido) acetate 65. The structures of the compounds were characterised by 1D NMR (1H, 13C, and DEPT 135), IR spectroscopy, elemental analysis and high-resolution mass spectroscopy. Novel selected synthesised quinoline compounds were evaluated of in vitro for two biological assays; namely anti-malarial activity and cytotoxicity. The anti-malaria activities of the novel quinoline compounds against 3D7 strain of the malaria parasite Plasmodium falciparum displayed that 2,6-dichloroquinoline-3-methylene thiazolidinedi-2,4-one 55C, (Z)-5-((7-fluorotetrazolo [1,5a] quinoline-4-yl) methylene) thiazolidinedi-2,4-one 56B and (Z)-5((7-ethoxytetrazolo [1,5a] quinoline-4-yl) methylene) thiazolidinedi-2,4-one 56F are potential malaria drugs since they reduced the percentage parasite viability to 25.80, 12.40 and 20.40 respectively. These results were further substantiated by their IC50 values 0.40, 0.04 and 0.50 µg/mL. Compound 56B displayed the highest cytotoxicity activity against human cervix adenocarcinoma cells displaying percentage viability of 14.22 %. Compounds 56F and 56C displayed moderate cytotoxicity activity at 56.60 and 59.81 % viability. / NRF
13

Randy Akrofi MS Thesis

Randy Akrofi (15342217) 29 April 2023 (has links)
<p>  </p> <p>Quinolines are benzopyridine complexes present in many modern antimalarial, anticancer, anti-inflammatory, antimicrobial, and other useful pharmaceuticals and natural products.1,2 Quinolines form the scaffold for many potent anticancer drugs; this is because quinolines can undergo both nucleophilic and electrophilic substitution reactions, can be ingested and inhaled by humans without any harm, and possess a great deal of biological importance.3 My research has focused on synthesizing 3H-pyrazolo[4,3-f]quinoline analogs. The 3H-pyrazolo[4,3-f]quinoline scaffold was modified using various amine groups to obtain amide analogs as well as see how a change in the scaffold affects the anticancer activity of the synthesized complexes by screening them against kinases such as FLT3, CDK2, CDK4, and CDK9 to see if they are effective inhibitors. The synthesized complexes were then characterized using proton, carbon NMR and FTIR spectroscopy.</p>
14

Aplicação de reagentes organometálicos na síntese de novos derivados quinolínicos de interesse medicinal / Application of organometallic reagents in the synthesis of new quinoline derivatives of medicinal interest

Nicolino, Paula Valim 24 July 2015 (has links)
O núcleo quinolínico constitui uma das classes de heterociclos nitrogenados de maior destaque, pois são amplamente encontradas em produtos naturais, além de comporem a lista dos considerados esqueletos \"privilegiados\", relacionados com as diversas classes terapêuticas como: anticâncer, anticolinesterásicos, antimaláricos, etc. Diante das abordagens sintéticas de funcionalização de anéis heteroaromáticos, o uso de espécies organometálicas ocupa, hoje, uma posição central na química orgânica sintética, principalmente na formação de novas ligações carbono-carbono. Dessa forma, o presente trabalho explorou essencialmente a reatividade de quinolinas frente à reagentes organometálicos tais como alquil-lítio, amidetos de lítio, turbo-Grignard e amidetos mistos de magnésio e lítio. Inicialmente, foi estudada a funcionalização da 4,7- dicloroquinolina através da reação de metalação dirigida frente aos diferentes reagentes disponíveis. Em seguida, foi desenvolvida uma metodologia de troca iodo-magnésio para a 7-cloro-4-iodoquinolina visando a obtenção de derivados funcionalizados na posição C4 bastante estratégica para atividade antimalárica. Neste estudo foi utilizado o reagente turbo-Grignard para etapa de troca, seguida da reação com eletrófilos. Os compostos obtidos tiveram sua atividade antimalárica avaliada pelo grupo do Dr. Adrian M. Pohlit do Instituto Nacional de Pesquisas da Amazônia (INPA). A metodologia de troca iodomagnésio do turbo-Grignard frente à 7-cloro-4-iodoquinolina também foi aplicada para a obtenção de outros derivados por reações de acoplamento cruzado de Negishi, e na rota sintética de um híbrido molecular planejado com potencial atividade antimalárica. Além disso, foi estudada a reação de troca halogênio-metal da 3-bromoquinolina frente a reagentes de lítio seguida da reação com aldeídos. Por fim, algumas das estruturas sintetizadas também tiveram avaliação da atividade anticâncer realizada pelo grupo da Prof. Dra. Letícia Lotufo da Universidade Federal do Ceará. Portanto, foram demonstradas neste trabalho estratégias simples e eficientes utilizando reagentes organometálicos para funcionalização de quinolinas de interesse sintético e medicinal. / The quinoline unit is one of most important nitrogen heterocycle classes since it is found in a large number of natural products. Moreover, it is considered a privileged scaffold presenting a variety of pharmacologic activities such as: anti-cancer, anticholinesterase, antimalarial and others. Among the available aromatic heterocycle functionalization approaches, the organometallic chemistry have a prominent position mainly on the construction of new carbon-carbon bonds. In this context, this work have explored the quinoline reactivity against organometallic reagents like alkyl-lithium, lithium amides, turbo-Grignard and magnesium lithium amides. Initially, the functionalization of 4,7- dichloroquinoline was studied through the direct metalation reaction of the substrate with several available organometallic reagents. Afterwards, a new iodo-magnesium exchange methodology for the 7-chloro-4-iodoquinoline was developed in order to obtain C-4 functionalized quinoline derivatives. The turbo-Grignard was the reagent of choice in iodo-magnesium exchange reactions that were subsequently reacted with different electrophiles. The antimalarial activity of the compounds obtained in this study was evaluated by Dr. Adrian M. Pohlit group of National Institute of Amazon Research (INPA). The developed iodo-magnesium exchange methodology was further applied in Negishi cross-coupling reactions and on a synthetic study of a planned molecular hybrid with potential antimalarial activity. In addition, the halogen-metal exchange reaction on 3-bromoquinoline was studied using alkyl-lithium reagents with subsequent reaction with aldehydes. Finally, the anti-cancer activity of some of structures obtained in this work was evaluated by Prof. Dra Letícia Lotufo group of Federal University of Ceará
15

Síntese de (5-trifluormetil-1H-pirazol-1-IL)(quinolin-4-IL)metanonas de interesse farmacológico / Synthesis of (5-trifluoromethyl-1H-pyrazol-1-YL)(quinolin-4-YL)methanones of pharmacological interest

Nogara, Pablo Andrei 22 July 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A convergent synthesis of a series of 16 new polysubstituted (5-hydroxy-5-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl)(quinolin-4-yl)methanones, starting from isatin and alky(aryl/heteroaryl) ketones, is described. The diheteroaryl methanones were achieved at yields of up to 95% by a (3 + 2) cyclocondensation reaction involving 4-alkyl(aryl/heteroaryl)-4-methoxy-1,1,1-trifluorobut-3-en-2-ones (by two-step reaction) and 2-alkyl(aryl/heteroaryl)-4-carbohydrazides (by three-step reaction). Subsequently, representative dehydrated heterocyclic derivatives were obtained from the respective 5-hydroxy-2-pyrazoline moieties by classical dehydration reactions, which resulted in the corresponding (5-(trifluoromethyl)-1H-pyrazol-1-yl)(quinolin-4-yl)methanones (three examples) at yields of 69 82%. The compounds were characterized by one- and two-dimensional 1H/13C NMR, X-ray diffraction, GC-MS and elemental analysis. The subsequent cytotoxicity evaluation showed that compounds with aromatic groups at the 2-position of the quinoline and a methyl moiety at the 3-position of the pyrazole have significant cytotoxicity in human leukocytes at high concentrations (200 μM). / Uma síntese convergente de uma série de 16 novos poli-substituídos (5-hidroxi-5-(trifluorometil)-4,5-di-hidro-1H-pirazol-1-il)(quinolin-4-il)metanonas, a partir da isatina e alquil(aril/heteroaril)cetonas, é descrito. As diheteroarilmetanonas foram obtidas com rendimentos de até 95% por uma reação de ciclocondensação (3 + 2) envolvendo 4-alquil(aril/heteroaril)-4-metóxi-1,1,1-trifluorbut-3-en-2-onas (reação em dois passos) e 2-alquil(aril/heteroaril)-4-carbohidrazidas (reação em três passos). Subsequentemente, os representantes desidratados dos heterociclos foram obtidos a partir das respectivas porções de 5-hidróxi-2-pirazolina por reações de desidratação clássicas, o que resultou nas correspondentes (5-(trifluormetil)-1H-pirazol-1-il)(quinolin-4-il )metanonas (três exemplos) com rendimentos de 69-82%. Os compostos foram caracterizados por RMN de 1H e 13C uni e bidimensional, difração de raios-X, CG-EM e análise elementar. As posteriores avaliações da citotoxicidade mostraram que os compostos com grupos aromáticos na posição 2 da quinolina e o grupo metila na posição 3 do pirazol, possuem significativa citotoxicidade em leucócitos humanos em concentrações elevadas (200 μM).
16

Development and biological evaluation of novel fluorinated ingredients for modern crop protection / Développement et évaluation biologique de nouveaux ingrédients fluorés pour une protection moderne des cultures

Aribi, Fallia 09 June 2017 (has links)
Ce doctorat a permis la conception de nouvelles molécules destinées aux développements de futurs produits phytosanitaires. Tout d’abord, la synthèse d’alpha,alpha-difluoro-beta-hydroxy cétones a été réalisée. Motif déjà reconnu dans le domaine pharmaceutique, nous voulions étendre son champ d’application à l’agrochimie. Une série de composés possédant une activité biologique en tant qu’agonistes des récepteurs GABA a été synthétisée. Ils ont été obtenus à l’issu d’une synthèse convergente nécessitant une réaction de couplage entre un aldéhyde aromatique et un intermédiaire alpha,alpha-difluoro-beta-trifluoromethyldihydroxy cétone. L’analyse biologique de nos produits a fait ressortir un type de famille spécifique. Une approche prodrug a débuté afin d’en affiner la structure et d’en faire ressortir un hit. Dans un second temps, le développement d’une série de quinoléines substituées par des groupements fluorés en position 2 et 4 a été conduit. Ces molécules peu décrites dans la littérature fûrent synthétisées dans des conditions douces avec de bons rendements et une complète régiosélectivité, inspirée par les réactions de Combes et de Meth-Cohn utilisant un Réactif Fluoroalkyl Amine (FARs). La post-fonctionnalisation en position 3 et 8 a permis l’exemplification de ces composés. Une étude physico-chimique réalisée sur une série homogène a apporté des informations complémentaires sur leurs propriétés électroniques. Bien qu’aucune molécule n’ait montré d’activité biologique, nous avons pu lors de ce projet réaliser la synthèse de nouvelles quinoléines et évaluer des FARs dans la synthèse de molécules inconnues de la littérature jusqu’à ce jour. / This PhD thesis allowed the conception of new molecules for the development of novel phytosanitary ingredients. First, the synthesis of alpha,alpha-difluoro-betahydroxy ketones was performed. Since this motif is already known in the pharmaceutical field, we decided to extend their application to the agrochemical field. A series of compounds with biological activities as GABA agonist receptors was synthesized. They were obtained by a convergent method after a coupling reaction between benzaldehydes and alpha,alpha-difluoro-beta-trifluoromethyldihydroxy ketone intermediates. Biological analysis highlighted a specific family of compounds. A prodrug approach was applied to tune the structure and allowed the discovery of a hit. Second, the development of a series of 2,4-(fluoroalkyl)-substituted quinoline derivatives was conducted. Scarcely described in literature, these molecules were obtained under smooth conditions, with good yields and a complete regioselectivity, inspired by Combes and Meth- Cohn reactions using Fluoroalkyl Amino Reagents (FARs). Post-functionalization in position 3 and 8 allowed us to increase the scope of the reaction. A physico-chemical study gave complementary informations on their electronical properties. Although none of these molecules have shown biological activity, we have during this project realized the synthesis of new quinolines and evaluated the use of FARs in the synthesis of unknown fluorinated molecules.
17

Synthesis and bioevaluation of laccase substrates and substituted quinolines

Prasain, Keshar January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / Our research work is divided into three chapters. In the first chapter, synthesis of substituted phenolic compounds including halogenated di- and trihydroxybenzenes, aminophenols, and substituted di-tert-butylphenols, their redox potential, laccase oxidation, and mosquito anti-larval activities are discussed. The synthesized substituted phenols were found to be the substrates but not the inhibitors of laccase. An inverse correlation between the oxidation potential and the laccase oxidation efficiency of halogenated hydroxybenzenes and aminophenols was established. However, substituted di-tert-butylphenols were found to have anti-larval activities in mosquitoes resulting in the death of the larvae just before reaching pupation. Among the di-tert-butyl phenols studied, water insoluble, 2,4-di-tert-butyl-6-(3-methyl-2-butenyl)phenol (16), 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime (14), and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (17) caused the mortility of 98%, 93%, and 92% of Anopheles gambiae larvae in the concentration of 182 nM, 3.4 µM, and 3.7 µM, respectively. In particular, compound 16 had similar anti-larval activities as compared to MON-0585, an anti-larval agent reported by Monsanto in the 70’s. In the second chapter, inhibition of protein kinase C (PKC) phosphorylation by substituted quinolines (PQs) is inverstigated. PQ compounds such as N-(3-aminopropyl)-6-methoxy-4-methyl-5-(3-(trifluormethyl)phenoxy)quinolin-8-amine (PQ1), N-(furan-2-ylmethyl)-6-methoxy-4-methyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ11), and 6-methoxy-4-methyl-N-(quinolin-4-ylmethyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ15) were found to inhibit PKC phosphorylation with IC50 values of 35 nM, 42.3 nM, and 216.3 nM respectively, among which PQ1 and PQ11 were found to be potent PKC inhibitors as comparable to that of staurosporine (IC50 = 33 nM). In chapter three, the tissue distribution of PQ1 and PQ11 in normal C57BL/6J mice and the effect of PQ1 on the normal tissues of mice were investigated. Substituted quinolines, PQ1 and PQ11 were distributed in the tissues in concentrations that were more than 40 folds of their effective dose. PQ1 and PQ11 were also found to penetrate the blood brain barrier and collect in the tissue in significant amounts. The administration of PQ1 and PQ11 had no effect in the normal behavior of the animals indicating no short term adverse effects. PQ1 was found to increase the expression of survivin, an anti-apoptotic factor and decrease the expression of cleaved caspase-3 and caspase-8, pro-apoptotic proteins. These studies suggests that PQ1 might have anti-apoptotic activities in normal cells, in contrast to the role of PQ1 in cancer cells where it has demonstrated to induce apoptosis. The study also indicated that PQ11 was better metabolized from the tissues over time as compared to PQ1.
18

Propriedades fotoquímicas e fotofísicas de novos materiais derivados quinolinas e di naftalimidas / Photochemistry and photophysical properties of new materials derivatives of quinolines and Di-naphtalimides

Guerta, Adelsimara Ceballos 18 June 2007 (has links)
Um dos temas modernos em fotoquímica em soluções aquosas é a observação de prototropismo de estados eletrônicos excitados. Resumidamente, moléculas orgânicas contendo grupamentos ácido-base quando excitadas, e cujo tempo de vida do estado excitado seja longo o suficiente, reações competitivas de transferência de prótons com as do processo de relaxação poderão ocorrer. No caso de aumento de acidez os compostos são denominados fotoácidos e no contrário fotobases. Este fenômeno é atribuído a um estado isoeletrônico da molécula no estado fundamental tendo sido descritos variações de até sete unidades de pKa. Do ponto de vista da investigação Físico-Química o estudo da circunvizinhança, na qual as espécies excitadas percorrem uma superfície de potencial seja na direção da reassociação seja na da ionização com posterior solvatação das mesmas, fornece uma importante ferramenta de análise de propriedades de micro ambiente. Esta possibilidade advém das excelentes propriedades espectrais dos grupos cromofóricos desta classe de compostos o que facilita o monitoramento das espécies transientes adicionado ao estágio técnico atual de medidas ultra-rápidas. Neste estudo enfocamos o estudo de derivados de quinolina (fotobase), contendo grupos passíveis de reação de polimerização. Os derivados 3-alil-2-metilquinolin-4-ol (HIQ) e 3-alil-4-cloro-2-metilquinolina (CLQ) foram preparados e as propriedades fotoprototrópicas determinadas. O primeiro monômero comporta-se como fotobase ou fotoácido dependendo do pH do meio que este se encontra e o CLQ como fotobase. Na seqüência tentamos obter polímeros do HIQ e CLQ, porém não se obteve um resultado positivo devido a dificuldade da polimerização de grupos alil inclusive por via eletroquímica. Em seqüência prosseguimos à determinação das propriedades fotoquímicas e fotofísicas de derivados de di-naftalimidas, devido às inúmeras aplicações destes compostos em novos materiais. Propriedades destas ftalimidas são em geral devidas à conjugação dos elétrons do grupo imida aos do anel naftalênico. Esta conjugação confere uma alto grau de planaridade aos derivados, de forma que a solvatação é dificultada. Observa-se via de regra espectros tanto de absorção como de emissão de fluorescência com alta resolução vibrônica seja nas transições S0-S1 ou S0-S2. Os efeitos espectroscópicos esperados de solventes devem ser função das cadeias laterais nos grupos imidas. Neste contexto foram preparados vários derivados para uso como sondas. Foram estudados sete compostos: N,N\'-n-butil-1,4,5,8-di-naftalimida (BUNDI); N,N\'-(2-cloro-etileno)-1,4,5,8-di-naftalimida (CLNDI); N,N\'-(2-bromo-etileno)-1,4,5,8-di-naftalimida (BRNDI); N,N\'-2-hidroxietileno-1,4,5,8-di-naftalimida (OHNDI); N,N\'-(N,N\'-dimetiletilenodiamina)-1,4,5,8-di-naftalimida (DMNDI); N,N\'-amino-1,4,5,8-di-naftalimida(DANDI) e N,N\'-1,4,5,8-di-naftalimida (NDI). Os derivados aqui estudados responderam de forma excelente às expectativas levando seja à formação de dímeros e agregados seja a alterações nas intensidades e relações das bandas vibrônicas (excitação e emissão) das transições S0-S1. Demonstra-se aqui a excelente qualidade destes compostos como repórteres do próprio estado de suas moléculas como do meio circunvizinho. / Excited state proto transfer reactions in aqueous media is among current themes in photochemistry research. Shortly, organic molecules having acid or basic groups and presenting excited state lifetimes long enough, competitive prototropic reactions can occur. This phenomenon is attributed to an isoelectronic state of the ground state molecule and up to seven units of pKa changes have been described. From the Physical Chemistry investigation viewpoint the study of the neighborhood where the excited species have a potential surface to describe either for the re association reaction or for the ionization followed by solvation, presents an important tool for the analysis of the microenvironment. This feature arises from the optimal spectral properties of the chromophoric groups of this class of compounds, which facilitates monitoring transient species as well by the current technology standards. In this work focused a photobase derivative from quinoline having a suitable polymerizable group. The 3-allyl-2-methylquinolin-4-ol (HIQ) and the 3-allyl-4-chloro-2-methylquinoline (CLQ) were synthesized and their photoprotrtopic behavior determined. The first compound shows both photoacid and photobase character as a function of the solution pH whereas CLQ is a photobase. Following attempts to obtain polymers were unsuccessful either using electrochemical routes. Given the several applications of di-naphthalimides as new materials, photochemical and photophysical of some derivatives were determined. The properties of these phthalimides arise from the conjugation of the imide electrons with vicinal naphthalic ring. This conjugation confers a high planarity degree and hindering the chromophore solvation. Accordingly high vibronic resolution is observed in both excitation and emission spectra either in the S0-S1 or S0-S2 transitions. Expected solvent spectroscopic effects are thus due to the radical N-imide groups. In this subject several di-imides derivatives were prepared for the use as medium probes. Seven compounds were investigated: N,N\'-n-butyl-1,4,5,8-di-naphthalimide (BUNDI; N,N\'-(2-chloroethylene)-1,4,5,8-di-naphthalimide (CLNDI); N,N\'-(2-bromoethylene) )-1,4,5,8-di-naphthalimide (BRNDI), N,N\'-2-hydroxiethylene-1,4,5,8-di-naphthalimide (OHNDI); N,N\'-(N,N\'-dimethylethylenodiamine)-1,4,5,8-di-naphthtalimide (DMNDI); N,N\'-amine-1,4,5,8-di-naphthalimide (DANDI) and N,N\'-1,4,5,8-di-naphthalimide (NDI). The derivatives studied fully satisfied the expectations leading to either a dimer and aggregate formation or to changes in the intensities or in the vibronic bands intensities relationships (excitation and emission) of the S0-S1 transitions. Here it is shown the excellent quality of these molecules as self and microenvironment probes.
19

Design and Development of Metal-free Cross Dehydrogenative Coupling Reactions for the Construction of C-S, C-O and C-C bonds

Yogesh, S January 2017 (has links) (PDF)
The thesis entitled “Design and Development of Metal-Free Cross Dehydrogenative Coupling Reactions for the construction of C-S, C-O and C-C bonds” is divided into three Chapters. Chapter 1 is presented in five parts, which reveals the cross dehydrogenative coupling (CDC) strategies for the C–S bond forming reactions through C–H functionalization strategy using heterocyclic thiols and thiones. Chapter 2 presents tetrabutyl ammonium iodide (TBAI) catalyzed chemoselective α-aminoxylation of ketones with N-hydroxyimidates using TBHP as oxidant under cross dehydrogenative coupling (CDC) strategy. Chapter 3 describes a transition metal-free Minisci reaction for the acylation of isoquinolines, quinolines, and quinoxaline. Chapter 1 Iodine Promoted C-S Bond Forming Reactions using Dimethyl Sulfoxide as an Oxidant Chapter 1 reveals the utility of cross dehydrogenative coupling (CDC) reactions for the formation of C–S bonds by employing C–H functionalization strategies.1 The direct functionalization of C–H bonds to form C–C and C–X (N, O, S and P) bonds using metal-free reaction conditions is an interesting research topic in recent years.2 Use of dimethyl sulfoxide as an oxidant is emerging as one of the research topics of great interest and utility.3 Heterocyclic thiols and thiones are important precursors for synthesizing a variety of pharmaceuticals and biologically active compounds.4 Therefore it is useful to develop CDC reactions using heterocyclic thiols and thiones as precursors. In this chapter, we describe CDC reactions of heterocyclic thiols and thiones for the sulfenylation of ketones, aldehydes, α, β unsaturated methyl ketone derivatives, pyrazolones, enaminones and imidazoheterocycles using DMSO as an oxidant Chapter 1: Part 1 Iodine Promoted Regioselective α-Sulfenylation of Carbonyl Compounds using Dimethyl Sulfoxide as an Oxidant: In this chapter, a rare regioselective C–H sulfenylation of carbonyl compounds with heterocyclic thiones and thiols have been described using iodine and dimethyl sulfoxide as reagents. Thus, dimethyl sulfoxide (as an oxidant) and stoichiometric amount of iodine have been used for the sulfenylation of ketones using heterocyclic thiones. Whereas the sulfenylation of ketones with heterocyclic thiols required catalytic amount of iodine. This protocol offers a rare regioselective sulfenylation of (i) methyl ketones in the presence of more reactive α-CH2 or α-CH groups, and (ii) aldehydes under CDC method. A few representative examples are highlighted in Scheme 1.5 The application of this methodology has been demonstrated by synthesizing a few precursors for Julia-Kocienski olefination intermediates. Scheme 1. Iodine promoted rare regioselective α-sulfenylation of ketones and aldehydes Siddaraj , Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090 Chapter 1: Part 2 Regioselective Sulfenylation of α’-CH3 or α’-CH2 Groups of α, β Unsaturated Ketones using Dimethyl Sulfoxide as an Oxidant: In this chapter, an interesting regioselective sulfenylation of α’-CH3 or α’-CH2 groups of α, β unsaturated ketones using dimethyl sulfoxide as an oxidant and catalytic amount of aq. HI (20 mol %) as an additive has been described. This eco-friendly method uses readily available, inexpensive I2 or HI and DMSO. This methodology exhibits a high regioselectivity without forming Michael addition product in the presence of strong acid such as aq. HI or iodine, which is difficult to achieve under cross dehydrogenative coupling (CDC) conditions. Current methodology exhibits a broad substrate scope. A few examples are shown in Scheme 2.6 Scheme 2. HI and DMSO promoted α’-sulfenylation of α, β unsaturated ketones Siddaraju, Y.; Prabhu, K. R. (Manuscript submitted) Chapter 1: Part 3 Iodine Catalyzed Sulfenylation of Pyrazolones using Dimethyl Sulfoxide as an Oxidant: In this chapter, a sustainable and efficient strategy for the sulfenylation of pyrazolones has been described using metal-free conditions by employing DMSO as an oxidant and iodine as a catalyst. A variety of heterocyclic thiols, heterocyclic thiones and disulfides undergo C–H functionalization reaction with pyrazolone derivatives furnishing the corresponding sulfenylated products in short time. Most of the products are isolated in pure form without column purification. A few examples are presented in Scheme 3.7 Scheme 3. Iodine promoted sulfenylation of pyrazolones Siddaraju, Y.; Prabhu, K. R. Org. Biomol. Chem. 2017, 15, 5191 Chapter 1: Part 4 Iodine-Catalyzed Cross Dehydrogenative Coupling Reaction: Sulfenylation of Enaminones using Dimethyl Sulfoxide as an Oxidant: In this chapter, synthesis of poly functionalized aminothioalkenes has been described using substoichiometric amount of iodine and DMSO as an oxidant. This metal-free methodology enables a facile sulfenylation of enaminones with heterocyclic thiols and thiones. This methodology is one of the simple approaches for the sulfenylation of enaminones under cross dehydrogenative coupling method. A few examples are highlighted in Scheme 4.8 Scheme 4. Cross-dehydrogenative coupling approach for sulfenylation of enaminones Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084 Chapter 1: Part 5 Iodine-Catalyzed Cross Dehydrogenative Coupling Reaction: A Regioselective Sulfenylation of Imidazoheterocycles using DMSO as an Oxidant: In this chapter, a simple synthetic approach for the regioselective sulfenylation of imidazoheterocycles using iodine as a catalyst and DMSO as an oxidant under cross dehydrogenative coupling (CDC) reaction conditions has been demonstrated. This protocol provides an efficient, mild and inexpensive method for coupling heterocyclic thiols and heterocyclic thiones with imidazoheterocycles. This is the first report on sulfenylation of imidazoheterocycles with heterocyclic thiols and heterocyclic thiones under metal-free conditions. A few examples are shown in Scheme 5.9 Scheme 5. Cross-dehydrogenative coupling approach for sulfenylation of imidazoheterocycles Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838 Chapter 2 Chemoselective α-Aminoxylation of Aryl Ketones: Cross Dehydrogenative Coupling Reactions Catalyzed by Tetrabutyl Ammonium Iodide: In this chapter, chemoselective α-aminoxylation of ketones with N-hydroxyimidates catalyzed by tetrabutyl ammonium iodide (TBAI) has been presented. The coupling reaction of a variety of ketones with N-hydroxysuccinimide (NHSI), N-hydroxyphthalimide (NHPI), N-hydroxybenzotriazole (HOBt) or 1-hydroxy-7-azabenzotriazole (HOAt) using TBHP as oxidant has been investigated. This α-aminoxylation of ketones is chemoselective as aryl methyl ketones, aliphatic ketones as well as benzylic position are inactive under the reaction condition. A few examples are highlighted in Scheme 6.10 The application of this method has been demonstrated by transforming a few coupled products into synthetically useful vinyl phosphates. Scheme 6. Chemoselective α-aminoxylation of ketones with N-hydroxyimidates Siddaraju, Y.; Prabhu, K. R. Org. Biomol. Chem. 2015, 13, 11651 Chapter 3 A Transition Metal-Free Minisci Reaction: Acylation of Isoquinolines, Quinolines, and Quinoxaline: In this chapter, transition metal-free acylation of isoquinoline, quinoline and quinoxaline derivatives with aldehydes has been described by employing TBAB (tetrabutyl ammonium bromide, 30 mol %) and K2S2O8 as an oxidant under cross dehydrogenative coupling (CDC) reaction. This intermolecular acylation of electron-deficient heteroarenes provides an easy access and a novel acylation method of heterocyclic compounds. The application of this CDC strategy has been illustrated by synthesizing isoquinoline-derived natural products. A few representative examples are shown in Scheme 7.11 Scheme 7. CDC reactions of heteroarenes with aldehydes Siddaraju, Y.; Lamani, M.; Prabhu, K. R. J. Org. Chem. 2014, 79, 3856
20

Propriedades fotoquímicas e fotofísicas de novos materiais derivados quinolinas e di naftalimidas / Photochemistry and photophysical properties of new materials derivatives of quinolines and Di-naphtalimides

Adelsimara Ceballos Guerta 18 June 2007 (has links)
Um dos temas modernos em fotoquímica em soluções aquosas é a observação de prototropismo de estados eletrônicos excitados. Resumidamente, moléculas orgânicas contendo grupamentos ácido-base quando excitadas, e cujo tempo de vida do estado excitado seja longo o suficiente, reações competitivas de transferência de prótons com as do processo de relaxação poderão ocorrer. No caso de aumento de acidez os compostos são denominados fotoácidos e no contrário fotobases. Este fenômeno é atribuído a um estado isoeletrônico da molécula no estado fundamental tendo sido descritos variações de até sete unidades de pKa. Do ponto de vista da investigação Físico-Química o estudo da circunvizinhança, na qual as espécies excitadas percorrem uma superfície de potencial seja na direção da reassociação seja na da ionização com posterior solvatação das mesmas, fornece uma importante ferramenta de análise de propriedades de micro ambiente. Esta possibilidade advém das excelentes propriedades espectrais dos grupos cromofóricos desta classe de compostos o que facilita o monitoramento das espécies transientes adicionado ao estágio técnico atual de medidas ultra-rápidas. Neste estudo enfocamos o estudo de derivados de quinolina (fotobase), contendo grupos passíveis de reação de polimerização. Os derivados 3-alil-2-metilquinolin-4-ol (HIQ) e 3-alil-4-cloro-2-metilquinolina (CLQ) foram preparados e as propriedades fotoprototrópicas determinadas. O primeiro monômero comporta-se como fotobase ou fotoácido dependendo do pH do meio que este se encontra e o CLQ como fotobase. Na seqüência tentamos obter polímeros do HIQ e CLQ, porém não se obteve um resultado positivo devido a dificuldade da polimerização de grupos alil inclusive por via eletroquímica. Em seqüência prosseguimos à determinação das propriedades fotoquímicas e fotofísicas de derivados de di-naftalimidas, devido às inúmeras aplicações destes compostos em novos materiais. Propriedades destas ftalimidas são em geral devidas à conjugação dos elétrons do grupo imida aos do anel naftalênico. Esta conjugação confere uma alto grau de planaridade aos derivados, de forma que a solvatação é dificultada. Observa-se via de regra espectros tanto de absorção como de emissão de fluorescência com alta resolução vibrônica seja nas transições S0-S1 ou S0-S2. Os efeitos espectroscópicos esperados de solventes devem ser função das cadeias laterais nos grupos imidas. Neste contexto foram preparados vários derivados para uso como sondas. Foram estudados sete compostos: N,N\'-n-butil-1,4,5,8-di-naftalimida (BUNDI); N,N\'-(2-cloro-etileno)-1,4,5,8-di-naftalimida (CLNDI); N,N\'-(2-bromo-etileno)-1,4,5,8-di-naftalimida (BRNDI); N,N\'-2-hidroxietileno-1,4,5,8-di-naftalimida (OHNDI); N,N\'-(N,N\'-dimetiletilenodiamina)-1,4,5,8-di-naftalimida (DMNDI); N,N\'-amino-1,4,5,8-di-naftalimida(DANDI) e N,N\'-1,4,5,8-di-naftalimida (NDI). Os derivados aqui estudados responderam de forma excelente às expectativas levando seja à formação de dímeros e agregados seja a alterações nas intensidades e relações das bandas vibrônicas (excitação e emissão) das transições S0-S1. Demonstra-se aqui a excelente qualidade destes compostos como repórteres do próprio estado de suas moléculas como do meio circunvizinho. / Excited state proto transfer reactions in aqueous media is among current themes in photochemistry research. Shortly, organic molecules having acid or basic groups and presenting excited state lifetimes long enough, competitive prototropic reactions can occur. This phenomenon is attributed to an isoelectronic state of the ground state molecule and up to seven units of pKa changes have been described. From the Physical Chemistry investigation viewpoint the study of the neighborhood where the excited species have a potential surface to describe either for the re association reaction or for the ionization followed by solvation, presents an important tool for the analysis of the microenvironment. This feature arises from the optimal spectral properties of the chromophoric groups of this class of compounds, which facilitates monitoring transient species as well by the current technology standards. In this work focused a photobase derivative from quinoline having a suitable polymerizable group. The 3-allyl-2-methylquinolin-4-ol (HIQ) and the 3-allyl-4-chloro-2-methylquinoline (CLQ) were synthesized and their photoprotrtopic behavior determined. The first compound shows both photoacid and photobase character as a function of the solution pH whereas CLQ is a photobase. Following attempts to obtain polymers were unsuccessful either using electrochemical routes. Given the several applications of di-naphthalimides as new materials, photochemical and photophysical of some derivatives were determined. The properties of these phthalimides arise from the conjugation of the imide electrons with vicinal naphthalic ring. This conjugation confers a high planarity degree and hindering the chromophore solvation. Accordingly high vibronic resolution is observed in both excitation and emission spectra either in the S0-S1 or S0-S2 transitions. Expected solvent spectroscopic effects are thus due to the radical N-imide groups. In this subject several di-imides derivatives were prepared for the use as medium probes. Seven compounds were investigated: N,N\'-n-butyl-1,4,5,8-di-naphthalimide (BUNDI; N,N\'-(2-chloroethylene)-1,4,5,8-di-naphthalimide (CLNDI); N,N\'-(2-bromoethylene) )-1,4,5,8-di-naphthalimide (BRNDI), N,N\'-2-hydroxiethylene-1,4,5,8-di-naphthalimide (OHNDI); N,N\'-(N,N\'-dimethylethylenodiamine)-1,4,5,8-di-naphthtalimide (DMNDI); N,N\'-amine-1,4,5,8-di-naphthalimide (DANDI) and N,N\'-1,4,5,8-di-naphthalimide (NDI). The derivatives studied fully satisfied the expectations leading to either a dimer and aggregate formation or to changes in the intensities or in the vibronic bands intensities relationships (excitation and emission) of the S0-S1 transitions. Here it is shown the excellent quality of these molecules as self and microenvironment probes.

Page generated in 0.0593 seconds