• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 44
  • 17
  • Tagged with
  • 169
  • 169
  • 85
  • 53
  • 46
  • 45
  • 35
  • 34
  • 31
  • 30
  • 24
  • 24
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Apprentissage de représentations sur-complètes par entraînement d’auto-encodeurs

Lajoie, Isabelle 12 1900 (has links)
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE). / Progress in the machine learning domain allows computational system to address more and more complex tasks associated with vision, audio signal or natural language processing. Among the existing models, we find the Artificial Neural Network (ANN), whose popularity increased suddenly with the recent breakthrough of Hinton et al. [22], that consists in using Restricted Boltzmann Machines (RBM) for performing an unsupervised, layer by layer, pre-training initialization, of a Deep Belief Network (DBN), which enables the subsequent successful supervised training of such architecture. Since this discovery, researchers studied the efficiency of other similar pre-training strategies such as the stacking of traditional auto-encoder (SAE) [5, 38] and the stacking of denoising auto-encoder (SDAE) [44]. This is the context in which the present study started. After a brief introduction of the basic machine learning principles and of the pre-training methods used until now with RBM, AE and DAE modules, we performed a series of experiments to deepen our understanding of pre-training with SDAE, explored its different proprieties and explored variations on the DAE algorithm as alternative strategies to initialize deep networks. We evaluated the sensitivity to the noise level, and influence of number of layers and number of hidden units on the generalization error obtained with SDAE. We experimented with other noise types and saw improved performance on the supervised task with the use of pepper and salt noise (PS) or gaussian noise (GS), noise types that are more justified then the one used until now which is masking noise (MN). Moreover, modifying the algorithm by imposing an emphasis on the corrupted components reconstruction during the unsupervised training of each different DAE showed encouraging performance improvements. Our work also allowed to reveal that DAE was capable of learning, on naturals images, filters similar to those found in V1 cells of the visual cortex, that are in essence edges detectors. In addition, we were able to verify that the learned representations of SDAE, are very good characteristics to be fed to a linear or gaussian support vector machine (SVM), considerably enhancing its generalization performance. Also, we observed that, alike DBN, and unlike SAE, the SDAE had the potential to be used as a good generative model. As well, we opened the door to novel pre-training strategies and discovered the potential of one of them : the stacking of renoising auto-encoders (SRAE).
132

Apprentissage et annulation des bruits impulsifs sur un canal CPL indoor en vue d'améliorer la QoS des flux audiovisuels

Fayad, Farah 02 April 2012 (has links) (PDF)
Le travail présenté dans cette thèse a pour objectif de proposer et d'évaluer les performances de différentes techniques de suppression de bruit impulsif de type asynchrone adaptées aux transmissions sur courants porteurs en lignes (CPL) indoor. En effet, outre les caractéristiques physiques spécifiques à ce type de canal de transmission, le bruit impulsif asynchrone reste la contrainte sévère qui pénalise les systèmes CPL en terme de QoS. Pour remédier aux dégradations dues aux bruits impulsifs asynchrones, les techniques dites de retransmission sont souvent très utilisées. Bien qu'elles soient efficaces, ces techniques de retransmission conduisent à une réduction de débit et à l'introduction de délais de traitement supplémentaires pouvant être critiques pour des applications temps réel. Par ailleurs, plusieurs solutions alternatives sont proposées dans la littérature pour minimiser l'impact du bruit impulsif sur les transmissions CPL. Cependant, le nombre de techniques, qui permettent d'obtenir un bon compromis entre capacité de correction et complexité d'implantation reste faible pour les systèmes CPL. Dans ce contexte, nous proposons dans un premier temps d'utiliser un filtre linéaire adaptatif : le filtre de Widrow, nommé aussi ADALINE (ADAptive LInear NEuron), que nous utilisons comme méthode de débruitage pour les systèmes CPL. Pour améliorer les performances du débruitage effectué à l'aide d'ADALINE, nous proposons d'utiliser un réseau de neurones (RN) non linéaire comme méthode de débruitage. Le réseau de neurones est un bon outil qui est une généralisation de la structure du filtre ADALINE. Dans un deuxième temps, pour améliorer les performances du débruitage par un réseau de neurones, nous proposons un procédé d'annulation du bruit impulsif constitué de deux algorithmes : EMD (Empirical Mode Decomposition) associé à un réseau de neurones de type perceptron multicouches. L'EMD effectue le prétraitement en décomposant le signal bruité en signaux moins complexes et donc plus facilement analysables. Après quoi le réseau de neurones effectue le débruitage. Enfin, nous proposons une méthode d'estimation du bruit impulsif utilisant la méthode GPOF (Generalized Pencil Of Function). L'efficacité des deux méthodes, EMD-RN et la technique utilisant l'algorithme GPOF, est évaluée en utilisant une chaîne de simulation de transmission numérique compatible avec le standard HPAV.
133

Segmentation supervisée d'images texturées par régularisation de graphes / Supervised segmentation of textured images by regularization on graphs

Faucheux, Cyrille 16 December 2013 (has links)
Dans cette thèse, nous nous intéressons à un récent algorithme de segmentation d’images basé sur un processus de régularisation de graphes. L’objectif d’un tel algorithme est de calculer une fonction indicatrice de la segmentation qui satisfait un critère de régularité ainsi qu’un critère d’attache aux données. La particularité de cette approche est de représenter les images à l’aide de graphes de similarité. Ceux-ci permettent d’établir des relations entre des pixels non-adjacents, et ainsi de procéder à un traitement non-local des images. Afin d’en améliorer la précision, nous combinons cet algorithme à une seconde approche non-locale : des caractéristiques de textures. Un nouveau terme d’attache aux données est dans un premier temps développé. Inspiré des travaux de Chan et Vese, celui-ci permet d’évaluer l’homogénéité d’un ensemble de caractéristiques de textures. Dans un second temps, nous déléguons le calcul de l’attache aux données à un classificateur supervisé. Entrainé à reconnaitre certaines classes de textures, ce classificateur permet d’identifier les caractéristiques les plus pertinentes, et ainsi de fournir une modélisation plus aboutie du problème. Cette seconde approche permet par ailleurs une segmentation multiclasse. Ces deux méthodes ont été appliquées à la segmentation d’images texturées 2D et 3D. / In this thesis, we improve a recent image segmentation algorithm based on a graph regularization process. The goal of this method is to compute an indicator function that satisfies a regularity and a fidelity criteria. Its particularity is to represent images with similarity graphs. This data structure allows relations to be established between similar pixels, leading to non-local processing of the data. In order to improve this approach, combine it with another non-local one: the texture features. Two solutions are developped, both based on Haralick features. In the first one, we propose a new fidelity term which is based on the work of Chan and Vese and is able to evaluate the homogeneity of texture features. In the second method, we propose to replace the fidelity criteria by the output of a supervised classifier. Trained to recognize several textures, the classifier is able to produce a better modelization of the problem by identifying the most relevant texture features. This method is also extended to multiclass segmentation problems. Both are applied to 2D and 3D textured images.
134

Technologies émergentes de mémoire résistive pour les systèmes et application neuromorphique / Emerging Resistive Memory Technology for Neuromorphic Systems and Applications

Suri, Manan 18 September 2013 (has links)
La recherche dans le domaine de l’informatique neuro-inspirée suscite beaucoup d'intérêt depuis quelques années. Avec des applications potentielles dans des domaines tels que le traitement de données à grande échelle, la robotique ou encore les systèmes autonomes intelligents pour ne citer qu'eux, des paradigmes de calcul bio-inspirés sont étudies pour la prochaine génération solutions informatiques (post-Moore, non-Von Neumann) ultra-basse consommation. Dans ce travail, nous discutons les rôles que les différentes technologies de mémoire résistive non-volatiles émergentes (RRAM), notamment (i) Phase Change Memory (PCM), (ii) Conductive-Bridge Memory (CBRAM) et de la mémoire basée sur une structure Metal-Oxide (OXRAM) peuvent jouer dans des dispositifs neuromorphiques dédies. Nous nous concentrons sur l'émulation des effets de plasticité synaptique comme la potentialisation à long terme (Long Term Potentiation, LTP), la dépression à long terme (Long Term Depression, LTD) et la théorie STDP (Spike-Timing Dependent Plasticity) avec des synapses RRAM. Nous avons développé à la fois de nouvelles architectures de faiblement énergivore, des méthodologies de programmation ainsi que des règles d’apprentissages simplifiées inspirées de la théorie STDP spécifiquement optimisées pour certaines technologies RRAM. Nous montrons l’implémentation de systèmes neuromorphiques a grande échelle et efficace énergétiquement selon deux approches différentes: (i) des synapses multi-niveaux déterministes et (ii) des synapses stochastiques binaires. Des prototypes d'applications telles que l’extraction de schéma visuel et auditif complexe sont également montres en utilisant des réseaux de neurones impulsionnels (Feed-forward Spiking Neural Network, SNN). Nous introduisons également une nouvelle méthodologie pour concevoir des neurones stochastiques très compacts qui exploitent les caractéristiques physiques intrinsèques des appareils CBRAM. / Research in the field of neuromorphic- and cognitive- computing has generated a lot of interest in recent years. With potential application in fields such as large-scale data driven computing, robotics, intelligent autonomous systems to name a few, bio-inspired computing paradigms are being investigated as the next generation (post-Moore, non-Von Neumann) ultra-low power computing solutions. In this work we discuss the role that different emerging non-volatile resistive memory technologies (RRAM), specifically (i) Phase Change Memory (PCM), (ii) Conductive-Bridge Memory (CBRAM) and Metal-Oxide based Memory (OXRAM) can play in dedicated neuromorphic hardware. We focus on the emulation of synaptic plasticity effects such as long-term potentiation (LTP), long term depression (LTD) and spike-timing dependent plasticity (STDP) with RRAM synapses. We developed novel low-power architectures, programming methodologies, and simplified STDP-like learning rules, optimized specifically for some RRAM technologies. We show the implementation of large-scale energy efficient neuromorphic systems with two different approaches (i) deterministic multi-level synapses and (ii) stochastic-binary synapses. Prototype applications such as complex visual- and auditory- pattern extraction are also shown using feed-forward spiking neural networks (SNN). We also introduce a novel methodology to design low-area efficient stochastic neurons that exploit intrinsic physical effects of CBRAM devices.
135

Automatic control of a marine loading arm for offshore LNG offloading offloading / Commande d’un bras de chargement de gaz naturel liquéfié en milieu marin

Besset, Pierre 27 April 2017 (has links)
Un bras de chargement de gaz est une structure articulée dans laquelle du méthane peut s’écouler à température cryogénique. En haute mer, ces bras sont installés sur le pont de navires-usines et se connectent à des méthaniers pour leur transférer du gaz. En raison de problèmes de sécurité et de performances, il est souhaité que le bras de chargement soit robotisé pour qu’il se connecte automatiquement. Cette thèse a pour objectif l‘automatisation de la connexion. Cette opération nécessite un pilotage de grande précision vis à vie de la taille du bras. Pour cette raison le bras est d’abord étalonné pour augmenter sa précision statique. Ensuite, des analyses modales expérimentales mettent en évidence l’importante souplesse de la structure des bras de chargement. Pour cette raison un générateur de trajectoires « douces », à jerk limité, est développé afin de piloter le bras sans le faire vibrer. Enfin, un système de compensation actif visant à compenser les mouvements relatifs des deux navires est mis en place. Cette compensation combine la génération de trajectoires douces avec une composante prédictive basée sur des réseaux de neurones. Cette dernière permet de prédire et d’anticiper les mouvements des navires sur l’océan, afin d’annuler tout retard dans la compensation. Finalement, cette thèse présente la première connexion automatique d’un bras de chargement, et démontre la validité de cette approche. / Marine loading arms are articulated structures that transfer liquefied gas between two vessels. The flanging operation of the loading arm to the receiving tanker is very sensitive. This thesis aims to robotize a loading arm so it can flange automatically. The required accuracy for the connection is very high. A calibration procedure is thus proposed to increase the accuracy of loading arms. Moreover a jerk-limited trajectory generator is developed to smoothly drive the arm without inducing oscillation. This element is important because the structures of loading arms have a very low stiffness and easily oscillate, as highlighted by modal analyses.A predictive active compensation algorithm is developed to track without delay the relative motion between the two vessels. This algorithm relies on an artificial neural network able to predict the evolution of this relative motion. Finally this thesis presents the first automatic connection of an offshore loading arm. The success of the final tests validate the feasibility the automatic connection and the validity of this approach.
136

Contribution à la Commande d’un Groupe de Robots Mobiles Non-holonomes à Roues / Formation Control of Multiple Nonholonomic Wheeled Mobile Robots

Peng, Xhaoxia 09 July 2013 (has links)
Ce travail s’inscrit dans le cadre de la commande d’un système multi agents/ multi véhicules. Cette thèse traite en particulier le cas de la commande d’un système multi-robots mobiles non-holonomes. L'objectif est de concevoir des lois de commandes appropriées pour chaque robot de sorte que l’ensemble des robots puisse exécuter des tâches spécifiques, de suivre des trajectoires désirées tout en maintenant des configurations géométriques souhaitées. L’approche leadeur-suiveur pour la commande d’un groupe de robots mobiles non-holonomes est étudiée en intégrant la technologie backstepping, avec une approche basée sur les neurodynamiques bioinspirées. Le problème de commande distribuée d’un système multi robots sur le consensus est également étudié. Des lois de commandes cinématiques distribuées sont développés afin de garantir au système multi-robots la convergence exponentielle vers une configuration géométrique souhaitée. Afin de tenir compte de la dynamique des paramètres inconnus, des commandes adaptatives de couple sont développés pour que le système multi-robots puisse converger asymptotiquement vers le modèle géométrique souhaité. Lorsque la dynamique est inconnue, des commandes à base de réseaux de neurones sont proposées / This work is based on the multi-agent system / multi-vehicles. This thesis especially focuses on formation control of multiple nonholonomic mobile robots. The objective is to design suitable controllers for each robot according to different control tasks and different constraint conditions, such that a group of mobile robots can form and maintain a desired geomantic pattern and follow a desired trajectory. The leader-follower formation control for multiple nonholonomic mobile robots is investigated under the backstepping technology, and we incorporate a bioinspired neurodynamics scheme in the robot controllers, which can solve the impractical velocity jumps problem. The distributed formation control problem using consensus-based approach is also investigated. Distributed kinematic controllers are developed, which guarantee that the multi-robots can at least exponentially converge to the desired geometric pattern under the assumption of "perfect velocity tracking". However, in practice, "perfect velocity tracking" doesn’t hold and the dynamics of robots should not be ignored. Next, in consideration of the dynamics of robot with unknown parameters, adaptive torque controllers are developed such that the multi-robots can asymptotically converge to the desired geometric pattern under the proposed distributed kinematic controllers. Furthermore, When the partial knowledge of dynamics is available, an asymptotically stable torque controller has been proposed by using robust adaptive control techniques. When the dynamics of robot is unknown, the neural network controllers with the robust adaptive term are proposed to guarantee robust velocity tracking
137

Modélisation de système synthétique pour la production de biohydrogène / Modeling of synthetic system for the production of biohydrogen

Fontaine, Nicolas 28 September 2015 (has links)
L'épuisement annoncé dans les prochaines décennies des ressources fossiles qui fournissent actuellement plus de 70% du carburant consommé dans les transports terrestres, aériens et maritimes au niveau mondial, incite à l'identification et le développement de nouvelles sources d'énergies renouvelables. La production de biocarburants issue de l'exploitation de la biomasse représente une des voies de recherche les plus prometteuses. Si la première génération des biocarburants (production à partir de plantes sucrières, de céréales ou d'oléagineux) atteint ses limites (concurrence avec les usages alimentaires, en particulier), la deuxième génération, produite à partir de ressources carbonées non alimentaires (lignocellulosique, mélasse, vinasse...), pourrait prendre le relais, une fois que les procédés de conversion seront suffisamment maîtrisés. À plus long terme, une troisième génération pourrait voir le jour, qui reposerait sur l'exploitation de la biomasse marine (microalgues, en particulier) mais où de nombreux verrous restent toutefois à lever : optimisation des procédés de culture et de récolte, extraction à coût réduit, optimisation des voies métaboliques etc. Il est à retenir que la stratégie nationale de recherche et d'innovation (SNRI) a retenu quatre « domaines clés » pour l'énergie : le nucléaire, le solaire photovoltaïque, les biocarburants de deuxième génération et les énergies marines. Ceux-ci sont complétés, au nom de leur contribution potentielle à la lutte contre le changement climatique, par le stockage du CO2, la conversion de l'énergie (dont les piles à combustible) et l'hydrogène. Le présent projet de recherche s'intéresse à explorer des voies d'amélioration de l'efficacité de la biotransformation de matière organique non alimentaire de nature industrielle en biocarburants de deuxième génération. En particulier, on s'intéressera à deux aspects complémentaires : l'optimisation des organismes microbiens et des voies métaboliques pour l'amélioration du rendement biologique de fabrication de biocarburants ; l'optimisation des procédés de mise en culture des microorganismes et d'extraction des biocarburant. Le projet de thèse consiste à mettre en œuvre les biotechnologies blanches, la biologie de synthèse et le génie des procédés pour la caractérisation de souches bactériennes, de leurs voies métaboliques et de prototypes expérimentaux pour la fabrication de biocarburants, de méthane et d'hydrogène à partir de rejets provenant de l'industrie sucrière de La Réunion, à savoir la mélasse ou la vinasse. Ce projet permettrait d'envisager de nouvelles perspectives de valorisation pour ces déchets industriels et de participer à la construction, à terme, d'une industrie réunionnaise durable des biocarburants et de l'hydrogène. / Hydrogen is a candidate for the next generation fuel with a high energy density and an environment friendly behavior in the energy production phase. Micro-organism based biological production of hydrogen currently suffers low hydrogen production yields because the living cells must sustain different cellular activities other than the hydrogen production to survive. To circumvent this, a team have designed a synthetic cell-free system by combining 13 different enzymes to synthesize hydrogen from cellobiose. This assembly has better yield than microorganism-based systems. We used methods based on differential equations calculations to investigate how the initial conditions and the kinetic parameters of the enzymes influenced the productivity of a such system and, through simulations, to identify those conditions that would optimize hydrogen production starting with cellobiose as substrate. Further, if the kinetic parameters of the component enzymes of such a system are not known, we showed how, using artificial neural network, it is possible to identify alternative models that allow to have an idea of the kinetics of hydrogen production. During our study on the system using cellobiose, other cell-free assemblies were engineered to produce hydrogen from different raw materials. Interested in the reconstruction of synthetic systems, we decided to conceive various tools to help the automation of the assembly and the modelling of these new synthetic networks. This work demonstrates how modeling can help in designing and characterizing cell-free systems in synthetic biology.
138

New methods for image classification, image retrieval and semantic correspondence / Nouvelles méthodes pour classification d'image, recherche d'image et correspondence sémantique

Sampaio de Rezende, Rafael 19 December 2017 (has links)
Le problème de représentation d’image est au cœur du domaine de vision. Le choix de représentation d’une image change en fonction de la tâche que nous voulons étudier. Un problème de recherche d’image dans des grandes bases de données exige une représentation globale compressée, alors qu’un problème de segmentation sémantique nécessite une carte de partitionnement de ses pixels. Les techniques d’apprentissage statistique sont l’outil principal pour la construction de ces représentations. Dans ce manuscrit, nous abordons l’apprentissage des représentations visuels dans trois problèmes différents : la recherche d’image, la correspondance sémantique et classification d’image. Premièrement, nous étudions la représentation vectorielle de Fisher et sa dépendance sur le modèle de mélange Gaussien employé. Nous introduisons l’utilisation de plusieurs modèles de mélange Gaussien pour différents types d’arrière-plans, e.g., différentes catégories de scènes, et analyser la performance de ces représentations pour objet classification et l’impact de la catégorie de scène en tant que variable latente. Notre seconde approche propose une extension de la représentation l’exemple SVM pipeline. Nous montrons d’abord que, en remplaçant la fonction de perte de la SVM par la perte carrée, on obtient des résultats similaires à une fraction de le coût de calcul. Nous appelons ce modèle la « square-loss exemplar machine », ou SLEM en anglais. Nous introduisons une variante de SLEM à noyaux qui bénéficie des même avantages computationnelles mais affiche des performances améliorées. Nous présentons des expériences qui établissent la performance et l’efficacité de nos méthodes en utilisant une grande variété de représentations de base et de jeux de données de recherche d’images. Enfin, nous proposons un réseau neuronal profond pour le problème de l’établissement sémantique correspondance. Nous utilisons des boîtes d’objets en tant qu’éléments de correspondance pour construire une architecture qui apprend simultanément l’apparence et la cohérence géométrique. Nous proposons de nouveaux scores géométriques de cohérence adaptés à l’architecture du réseau de neurones. Notre modèle est entrainé sur des paires d’images obtenues à partir des points-clés d’un jeu de données de référence et évaluées sur plusieurs ensembles de données, surpassant les architectures d’apprentissage en profondeur récentes et méthodes antérieures basées sur des caractéristiques artisanales. Nous terminons la thèse en soulignant nos contributions et en suggérant d’éventuelles directions de recherche futures. / The problem of image representation is at the heart of computer vision. The choice of feature extracted of an image changes according to the task we want to study. Large image retrieval databases demand a compressed global vector representing each image, whereas a semantic segmentation problem requires a clustering map of its pixels. The techniques of machine learning are the main tool used for the construction of these representations. In this manuscript, we address the learning of visual features for three distinct problems: Image retrieval, semantic correspondence and image classification. First, we study the dependency of a Fisher vector representation on the Gaussian mixture model used as its codewords. We introduce the use of multiple Gaussian mixture models for different backgrounds, e.g. different scene categories, and analyze the performance of these representations for object classification and the impact of scene category as a latent variable. Our second approach proposes an extension to the exemplar SVM feature encoding pipeline. We first show that, by replacing the hinge loss by the square loss in the ESVM cost function, similar results in image retrieval can be obtained at a fraction of the computational cost. We call this model square-loss exemplar machine, or SLEM. Secondly, we introduce a kernelized SLEM variant which benefits from the same computational advantages but displays improved performance. We present experiments that establish the performance and efficiency of our methods using a large array of base feature representations and standard image retrieval datasets. Finally, we propose a deep neural network for the problem of establishing semantic correspondence. We employ object proposal boxes as elements for matching and construct an architecture that simultaneously learns the appearance representation and geometric consistency. We propose new geometrical consistency scores tailored to the neural network’s architecture. Our model is trained on image pairs obtained from keypoints of a benchmark dataset and evaluated on several standard datasets, outperforming both recent deep learning architectures and previous methods based on hand-crafted features. We conclude the thesis by highlighting our contributions and suggesting possible future research directions.
139

Modèles de Mobilité de Véhicules par Apprentissage Profond dans les Systèmes de Tranport Intelligents / Deep Learning based Vehicular Mobility Models for Intelligent Transportation Systems

Zhang, Jian 07 December 2018 (has links)
Les systèmes de transport intelligents ont acquis un grand intérêt pour la recherche ces dernières années. Alors que la simulation réaliste du trafic joue un rôle important, elle n'a pas reçu suffisamment d'attention. Cette thèse est consacrée à l'étude de la simulation du trafic au niveau microscopique et propose des modèles de mobilité des véhicules correspondants. À l'aide de méthodes d'apprentissage profond, ces modèles de mobilité ont fait leurs preuves avec une crédibilité prometteuse pour représenter les véhicules dans le monde réel. D'abord, un modèle de mobilité basé sur un réseau de neurones piloté par les données est proposé. Ce modèle provient de données de trajectoires du monde réel et permet de mimer des comportements de véhicules locaux. En analysant les performances de ce modèle de mobilité basé sur un apprentissage de base, nous indiquons qu’une amélioration est possible et proposons ses spécifications. Un MMC est alors introduit. La préparation de cette intégration est nécessaire, ce qui comprend un examen des modèles de mobilité traditionnels basés sur la dynamique et l’adaptation des modèles « classiques » à notre situation. Enfin, le modèle amélioré est présenté et une simulation de scénarios sophistiqués est construite pour valider les résultats théoriques. La performance de notre modèle de mobilité est prometteuse et des problèmes de mise en œuvre sont également discutés / The intelligent transportation systems gain great research interests in recent years. Although the realistic traffic simulation plays an important role, it has not received enough attention. This thesis is devoted to studying the traffic simulation in microscopic level, and proposes corresponding vehicular mobility models. Using deep learning methods, these mobility models have been proven with a promising credibility to represent the vehicles in real-world. Firstly, a data-driven neural network based mobility model is proposed. This model comes from real-world trajectory data and allows mimicking local vehicle behaviors. By analyzing the performance of this basic learning based mobility model, we indicate that an improvement is possible and we propose its specification. An HMM is then introduced. The preparation of this integration is necessary, which includes an examination of traditional dynamics based mobility models and the adaptation method of “classical” models to our situation. At last, the enhanced model is presented, and a sophisticated scenario simulation is built with it to validate the theoretical results. The performance of our mobility model is promising and implementation issues have also been discussed
140

Analyse de la réduction du chatoiement sur les images radar polarimétrique à l'aide des réseaux neuronaux à convolutions

Beaulieu, Mario 04 1900 (has links)
En raison de la nature cohérente du signal RADAR à synthèse d’ouverture (RSO), les images RSO polarimétriques (RSOPOL) sont affectées par le bruit de chatoiement. L’effet du chatoiement peut être sévère au point de rendre inutilisable la donnée RSOPOL. Ceci est particulièrement vrai pour les données à une vue qui souffrent d’un chatoiement très intense.Un filtrage du bruit est nécessaire pour améliorer l’estimation des paramètres polarimétriques pouvant être calculés à partir de ce type de données. Cette opération constitue une étape importante dans le traitement et l’analyse des images RSOPOL. Récemment une nouvelle approche est apparue en traitement de données visant la solution d’une multitude de problèmes dont le filtrage, la restauration d’images, la reconnaissance de la parole, la classification ou la segmentation d’images. Cette approche est l’apprentissage profond et les réseaux de neurones à convolution (RNC). Des travaux récents montrent que les RNC sont une alternative prometteuse pour le filtrages des images RSO. En effet par leur capacité d’apprendre un modèle optimal de filtrage, ils tendent à surpasser les approches classiques du filtrage sur les images RSO. L’objectif de cette présente étude est d’analyser et d’évaluer l’efficacité du filtrage par RNC sur des données RSOPOL simulées et sur des images satellitaires RSOPOL RADARSAT-2, ALOS/PalSAR et GaoFen-3 acquises sur la région urbaine de San Francisco (Californie). Des modèles inspirés de l’architecture d’un RNC utilisé notamment en Super-résolution ont été adaptés pour le filtrage de la matrice de cohérence polarimétrique. L’effet de différents paramètres structuraux de l’architecture des RNC sur le filtrage ont été analysés, parmi ceux-ci on retrouve entre autres la profondeur du réseau (le nombre de couches empilées), la largeur du réseau (le nombre de filtres par couches convolutives) et la taille des filtres de la première couche convolutive. L’apprentissage des modèles a été effectué par la rétropropagation du gradient de l’erreur en utilisant 3 ensembles de données qui simulent la polarimétrie une vue des diffuseurs selon les classes de Cloude-Pottier. Le premier ensemble ne comporte que des zones homogènes.Les deux derniers ensembles sont composés de simulations en patchwork dont l’intensité locale est simulée par des images de texture et de cibles ponctuelles ajoutées au patchwork dans le cas du dernier ensemble. Les performances des différents filtres par RNC ont été mesurées par des indicateurs comprenant l’erreur relative sur l’estimation de signatures polarimétriques et des paramètres de décomposition ainsi que des mesures de distorsion sur la récupération des détails importants et sur la conservation des cibles ponctuelles. Les résultats montrent que le filtrage par RNC des données polarimétriques est soit équivalent ou nettement supérieur aux filtres conventionnellement utilisées en polarimétrie.Les résultats des modèles les plus profonds obtiennent les meilleures performances pour tous les indicateurs sur l’ensemble des données homogènes simulées. Dans le cas des données en patchwork, les résultats pour la restauration des détails sont nettement favorables au filtrage par RNC les plus profonds.L’application du filtrage par RNC sur les images satellitaires RADARSAT-2,ALOS/PalSAR ainsi GaoFen-3 montre des résultats comparables ou supérieurs aux filtres conventionnels. Les meilleurs résultats ont été obtenus par le modèle à 5 couches cachées(si on ne compte pas la couche d’entrée et de sortie), avec 8 filtres 3×3 par couche convolutive, sauf pour la couche d’entrée où la taille des filtres étaient de 9×9. Par contre,les données d’apprentissage doivent être bien ajustées à l’étendue des statistiques des images polarimétriques réelles pour obtenir de bon résultats. Ceci est surtout vrai au niveau de la modélisation des cibles ponctuelles dont la restauration semblent plus difficiles. / Due to the coherent nature of the Synthetic Aperture Radar (SAR) signal, polarimetric SAR(POLSAR) images are affected by speckle noise. The effect of speckle can be so severe as to render the POLSAR data unusable. This is especially true for single-look data that suffer from very intense speckle. Noise filtering is necessary to improve the estimation of polarimetric parameters that can be computed from this type of data. This is an important step in the processing and analysis of POLSAR images. Recently, a new approach has emerged in data processing aimed at solving a multi-tude of problems including filtering, image restoration, speech recognition, classification orimage segmentation. This approach is deep learning and convolutional neural networks(CONVNET). Recent works show that CONVNET are a promising alternative for filtering SAR images. Indeed, by their ability to learn an optimal filtering model only from the data, they tend to outperform classical approaches to filtering on SAR images. The objective of this study is to analyze and evaluate the effectiveness of CONVNET filtering on simulated POLSAR data and on RADARSAT-2, ALOS/PalSAR and GaoFen-3 satellite images acquired over the San Francisco urban area (California). Models inspired by the architecture of a CONVNET used in particular in super-resolution have been adapted for the filtering of the polarimetric coherency matrix. The effect of different structural parameters of theCONVNET architecture on filtering were analyzed, among which are the depth of the neural network (the number of stacked layers), the width of the neural network (the number of filters per convoluted layer) and the size of the filters of the first convolution layer. The models were learned by backpropagation of the error gradient using 3 datasets that simulate single-look polarimetry of the scatterers according to Cloude-Pottier classes. The first dataset contains only homogeneous areas. The last two datasets consist of patchwork simulations where local intensity is simulated by texture images and point target are added to the patchwork in the case of the last dataset. The performance of the different filters by CONVNET was measured by indicators including relative error on the estimation of polarimetric signatures and decomposition parameters as well as distortion measurements on the recovery of major details and on the conservation of point targets.The results show that CONVNET filtering of polarimetric data is either equivalent or significantly superior to conventional polarimetric filters. The results of the deepest models obtain the best performance for all indicators over the simulated homogeneous dataset. Inthe case of patchwork dataset, the results for detail restoration are clearly favourable to the deepest CONVNET filtering. The application of CONVNET filtering on RADARSAT-2, ALOS/PalSAR andGaoFen-3 satellite images shows results comparable or superior to conventional filters. The best results were obtained by the 5 hidden layers model (not counting the input and outputlayers), with 8 filters 3×3 per convolutional layer, except for the input layer where the filtersize was 9×9. On the other hand, the training data must be well adjusted to the statistical range of the real polarimetric images to obtain good results. This is especially true when modeling point targets that appear to be more difficult to restore.

Page generated in 0.1589 seconds