• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 134
  • 34
  • Tagged with
  • 440
  • 440
  • 245
  • 210
  • 178
  • 153
  • 138
  • 108
  • 103
  • 94
  • 86
  • 84
  • 82
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Reconfigurable hardware acceleration of CNNs on FPGA-based smart cameras / Architectures reconfigurables pour l’accélération des CNNs. Applications sur cameras intelligentes à base de FPGAs

Abdelouahab, Kamel 11 December 2018 (has links)
Les Réseaux de Neurones Convolutifs profonds (CNNs) ont connu un large succès au cours de la dernière décennie, devenant un standard de la vision par ordinateur. Ce succès s’est fait au détriment d’un large coût de calcul, où le déploiement des CNNs reste une tâche ardue surtout sous des contraintes de temps réel.Afin de rendre ce déploiement possible, la littérature exploite le parallélisme important de ces algorithmes, ce qui nécessite l’utilisation de plate-formes matérielles dédiées. Dans les environnements soumis à des contraintes de consommations énergétiques, tels que les nœuds des caméras intelligentes, les cœurs de traitement à base de FPGAs sont reconnus comme des solutions de choix pour accélérer les applications de vision par ordinateur. Ceci est d’autant plus vrai pour les CNNs, où les traitements se font naturellement sur un flot de données, rendant les architectures matérielles à base de FPGA d’autant plus pertinentes. Dans ce contexte, cette thèse aborde les problématiques liées à l’implémentation des CNNs sur FPGAs. En particulier, ces travaux visent à améliorer l’efficacité des implantations grâce à deux principales stratégies d’optimisation; la première explore le modèle et les paramètres des CNNs, tandis que la seconde se concentre sur les architectures matérielles adaptées au FPGA. / Deep Convolutional Neural Networks (CNNs) have become a de-facto standard in computer vision. This success came at the price of a high computational cost, making the implementation of CNNs, under real-time constraints, a challenging task.To address this challenge, the literature exploits the large amount of parallelism exhibited by these algorithms, motivating the use of dedicated hardware platforms. In power-constrained environments, such as smart camera nodes, FPGA-based processing cores are known to be adequate solutions in accelerating computer vision applications. This is especially true for CNN workloads, which have a streaming nature that suits well to reconfigurable hardware architectures.In this context, the following thesis addresses the problems of CNN mapping on FPGAs. In Particular, it aims at improving the efficiency of CNN implementations through two main optimization strategies; The first one focuses on the CNN model and parameters while the second one considers the hardware architecture and the fine-grain building blocks.
202

Towards non-conventional face recognition : shadow removal and heterogeneous scenario / Vers la reconnaissance faciale non conventionnelle : suppression des ombres et scénario hétérogène

Zhang, Wuming 17 July 2017 (has links)
Ces dernières années, la biométrie a fait l’objet d’une grande attention en raison du besoin sans cesse croissant d’authentification d’identité, notamment pour sécuriser de plus en plus d’applications enlignes. Parmi divers traits biométriques, le visage offre des avantages compétitifs sur les autres, e.g., les empreintes digitales ou l’iris, car il est naturel, non-intrusif et facilement acceptable par les humains. Aujourd’hui, les techniques conventionnelles de reconnaissance faciale ont atteint une performance quasi-parfaite dans un environnement fortement contraint où la pose, l’éclairage, l’expression faciale et d’autres sources de variation sont sévèrement contrôlées. Cependant, ces approches sont souvent confinées aux domaines d’application limités parce que les environnements d’imagerie non-idéaux sont très fréquents dans les cas pratiques. Pour relever ces défis d’une manière adaptative, cette thèse porte sur le problème de reconnaissance faciale non contrôlée, dans lequel les images faciales présentent plus de variabilités sur les éclairages. Par ailleurs, une autre question essentielle vise à profiter des informations limitées de 3D pour collaborer avec les techniques basées sur 2D dans un système de reconnaissance faciale hétérogène. Pour traiter les diverses conditions d’éclairage, nous construisons explicitement un modèle de réflectance en caractérisant l’interaction entre la surface de la peau, les sources d’éclairage et le capteur de la caméra pour élaborer une explication de la couleur du visage. A partir de ce modèle basé sur la physique, une représentation robuste aux variations d’éclairage, à savoir Chromaticity Invariant Image (CII), est proposée pour la reconstruction des images faciales couleurs réalistes et sans ombre. De plus, ce processus de la suppression de l’ombre en niveaux de couleur peut être combiné avec les techniques existantes sur la normalisation d’éclairage en niveaux de gris pour améliorer davantage la performance de reconnaissance faciale. Les résultats expérimentaux sur les bases de données de test standard, CMU-PIE et FRGC Ver2.0, démontrent la capacité de généralisation et la robustesse de notre approche contre les variations d’éclairage. En outre, nous étudions l’usage efficace et créatif des données 3D pour la reconnaissance faciale hétérogène. Dans un tel scénario asymétrique, un enrôlement combiné est réalisé en 2D et 3D alors que les images de requête pour la reconnaissance sont toujours les images faciales en 2D. A cette fin, deux Réseaux de Neurones Convolutifs (Convolutional Neural Networks, CNN) sont construits. Le premier CNN est formé pour extraire les descripteurs discriminants d’images 2D/3D pour un appariement hétérogène. Le deuxième CNN combine une structure codeur-décodeur, à savoir U-Net, et Conditional Generative Adversarial Network (CGAN), pour reconstruire l’image faciale en profondeur à partir de son homologue dans l’espace 2D. Plus particulièrement, les images reconstruites en profondeur peuvent être également transmise au premier CNN pour la reconnaissance faciale en 3D, apportant un schéma de fusion qui est bénéfique pour la performance en reconnaissance. Notre approche a été évaluée sur la base de données 2D/3D de FRGC. Les expérimentations ont démontré que notre approche permet d’obtenir des résultats comparables à ceux de l’état de l’art et qu’une amélioration significative a pu être obtenue à l’aide du schéma de fusion. / In recent years, biometrics have received substantial attention due to the evergrowing need for automatic individual authentication. Among various physiological biometric traits, face offers unmatched advantages over the others, such as fingerprints and iris, because it is natural, non-intrusive and easily understandable by humans. Nowadays conventional face recognition techniques have attained quasi-perfect performance in a highly constrained environment wherein poses, illuminations, expressions and other sources of variations are strictly controlled. However these approaches are always confined to restricted application fields because non-ideal imaging environments are frequently encountered in practical cases. To adaptively address these challenges, this dissertation focuses on this unconstrained face recognition problem, where face images exhibit more variability in illumination. Moreover, another major question is how to leverage limited 3D shape information to jointly work with 2D based techniques in a heterogeneous face recognition system. To deal with the problem of varying illuminations, we explicitly build the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborate the formation of face color. With this physics-based image formation model involved, an illumination-robust representation, namely Chromaticity Invariant Image (CII), is proposed which can subsequently help reconstruct shadow-free and photo-realistic color face images. Due to the fact that this shadow removal process is achieved in color space, this approach could thus be combined with existing gray-scale level lighting normalization techniques to further improve face recognition performance. The experimental results on two benchmark databases, CMU-PIE and FRGC Ver2.0, demonstrate the generalization ability and robustness of our approach to lighting variations. We further explore the effective and creative use of 3D data in heterogeneous face recognition. In such a scenario, 3D face is merely available in the gallery set and not in the probe set, which one would encounter in real-world applications. Two Convolutional Neural Networks (CNN) are constructed for this purpose. The first CNN is trained to extract discriminative features of 2D/3D face images for direct heterogeneous comparison, while the second CNN combines an encoder-decoder structure, namely U-Net, and Conditional Generative Adversarial Network (CGAN) to reconstruct depth face image from its counterpart in 2D. Specifically, the recovered depth face images can be fed to the first CNN as well for 3D face recognition, leading to a fusion scheme which achieves gains in recognition performance. We have evaluated our approach extensively on the challenging FRGC 2D/3D benchmark database. The proposed method compares favorably to the state-of-the-art and show significant improvement with the fusion scheme.
203

Dynamique des structures composites linéaires et non-linéaires en présence d'endommagement / Dynamics of linear and non linear damaged composite structures

Mahmoudi, Saber 28 March 2017 (has links)
Les structures composites sont souvent exposées à des ambiances dynamiques plus oumoins sévères. Ces vibrations peuvent développer différentes formes d’endommagement(fracture des fibres, délamination, fissuration de la matrice. . . ). Les défauts locaux sepropagent et affectent les propriétés mécaniques de la structure modifiant ainsi soncomportement dynamique global. Ces changements peuvent induire une dégradationrapide de la structure et une réduction de sa durée de vie. La thèse a pour objectif lamise en oeuvre de modèles de comportement pour le dimensionnement de structurescomplexes intégrant des sous-structures composites susceptibles d’être endommagées.La méthode des éléments finis est utilisée pour modéliser le comportement vibratoirelinéaire et non-linéaire de ces structures et l’endommagement est introduit via un modèlebilatéral, dans un premier temps. Durant le processus de résolution, une des difficultésrencontrées est le coût de calcul très élevé. Ainsi, un méta-modèle a été développé basésur les réseaux de neurones artificiels couplé avec la méthode de condensation par sousstructurationde Craig-Bampton. Les réseaux de neurones artificiels permettent d’estimer,à moindre cout numérique, le niveau d’endommagement sans avoir recours au calculexact. Le modèle d’endommagement bilatéral n’est pas adapté au cas de chargementsalternés ou périodiques. Par conséquent, la deuxième partie de la thèse est orientée versle développement d’un modèle d’endommagement unilatéral qui donne une meilleuredescription du comportement mécanique lorsque les micro-fissures sont fermées. De plus,dans plusieurs applications industrielles, les structures composites utilisées sont de faibleépaisseur. Par conséquent, elles peuvent avoir naturellement un comportement vibratoirenon-linéaire de type grands déplacements. Le modèle de comportement dynamique engrands déplacements et en présence de la non-linéarité matérielle d’endommagement estdéveloppé et validé. A l’issue de ces travaux de thèse, un outil numérique implémentésur MATLAB® a été développé intégrant deux modèles d’endommagement, bilatéralet unilatéral et une méta-modélisation permettant la localisation et l’estimation del’endommagement ainsi que la prédiction de la réponse dynamique des structures composites, totalement ou localement, endommagées. Le méta-modèle proposé permet deréduire significativement le coût de calcul tout en assurant une bonne précision en termesde localisation et d’estimation du niveau d’endommagement. Cet outil peut s’avérer utilepour diverses applications dans le domaine de surveillance de l’état de santé des structurescomposites. / Composite structures are often exposed to more or less severe dynamic perturbations.These vibrations can develop different forms of damage (fiber fracture, delamination,cracking of the matrix, etc.). Local defects propagate and affect the mechanical propertiesof the structure resulting to modify its global dynamic behavior. These changes can leadto the degradation of the structure and the reduction in its lifetime. This thesis focuseson the implementation of behavior models for the dimensioning of complex structuresintegrating damaged composite sub-structures. The finite element method is used tomodel the linear and nonlinear vibration behavior of these structures where the damageis introduced, initially, via a bilateral model. Since the high computational costs duringthe solving process, a meta-model was developed based on artificial neural networkscoupled with the condensation method of Craig-Bampton. Artificial neural networkspermit to estimate the damage severity at a lower numerical cost without resorting toexact calculation. The bilateral damage model is not adapted to the case of periodic loads.Consequently, the second part of the thesis is oriented towards the development of aunilateral damage model which gives a better description of the mechanical behaviorwhen the micro-cracks are closed. Moreover, in several industrial applications, the usedcomposite structures have small thickness. Therefore, they can naturally have a geometricnon-linear dynamic behavior. The model of dynamic behavior in large displacements andin the presence of material non-linearity of damage is developed and validated. At theend of this thesis, a numerical tool implemented on MATLAB® software was developedintegrating two models of damage, bilateral and unilateral, and a meta-modeling allowingthe localization and the estimation of the damage as well as the prediction of the linear andnon-linear dynamic responses of composite structures, totally or locally, damaged. Theproposed meta-model reduces significantly the computational cost and ensuring a goodaccuracy in terms of localization and estimation of the damage severity. Thereby, thistool can be useful in life-time estimation and monitoring strategies of composite structures.Thèse de
204

Neural networks as cellular computing models for temporal sequence processing. / Les réseaux de neurones comme paradigme de calcul cellulaire pour le traitement de séquences temporelles

Khouzam, Bassem 13 February 2014 (has links)
La thèse propose une approche de l'apprentissage temporel par des mécanismes d'auto-organisation à grain fin. Le manuscrit situe dans un premier temps le travail dans la perspective de contribuer à promouvoir une informatique cellulaire. Il s'agit d'une informatique où les calculs se répartissent en un grand nombre de calculs élémentaires, exécutés en parallèle, échangeant de l'information entre eux. Le caractère cellulaire tient à ce qu'en plus d’être à grain fin, une telle architecture assure que les connexions entre calculateurs respectent une topologie spatiale, en accord avec les contraintes des évolutions technologiques futures des matériels. Dans le manuscrit, la plupart des architectures informatiques distribuées sont examinées suivant cette perspective, pour conclure que peu d'entre elles relèvent strictement du paradigme cellulaire.Nous nous sommes intéressé à la capacité d'apprentissage de ces architectures, du fait de l'importance de cette notion dans le domaine connexe des réseaux de neurones par exemple, sans oublier toutefois que les systèmes cellulaires sont par construction des systèmes complexes dynamiques. Cette composante dynamique incontournable a motivé notre focalisation sur l'apprentissage temporel, dont nous avons passé en revue les déclinaisons dans les domaines des réseaux de neurones supervisés et des cartes auto-organisatrices.Nous avons finalement proposé une architecture qui contribue à la promotion du calcul cellulaire en ce sens qu'elle exhibe des propriétés d'auto-organisation pour l'extraction de la représentation des états du système dynamique qui lui fournit ses entrées, même si ces dernières sont ambiguës et ne reflètent que partiellement cet état. Du fait de la présence d'un cluster pour nos simulations, nous avons pu mettre en œuvre une architecture complexe, et voir émerger des phénomènes nouveaux. Sur la base de ces résultats, nous développons une critique qui ouvre des perspectives sur la suite à donner à nos travaux. / The thesis proposes a sequence learning approach that uses the mechanism of fine grain self-organization. The manuscript initially starts by situating this effort in the perspective of contributing to the promotion of cellular computing paradigm in computer science. Computation within this paradigm is divided into a large number of elementary calculations carried out in parallel by computing cells, with information exchange between them.In addition to their fine grain nature, the cellular nature of such architectures lies in the spatial topology of the connections between cells that complies with to the constraints of the technological evolution of hardware in the future. In the manuscript, most of the distributed architecture known in computer science are examined following this perspective, to find that very few of them fall within the cellular paradigm.We are interested in the learning capacity of these architectures, because of the importance of this notion in the related domain of neural networks for example, without forgetting, however, that cellular systems are complex dynamical systems by construction.This inevitable dynamical component has motivated our focus on the learning of temporal sequences, for which we reviewed the different models in the domains of neural networks and self-organization maps.At the end, we proposed an architecture that contributes to the promotion of cellular computing in the sense that it exhibits self-organization properties employed in the extraction of a representation of a dynamical system states that provides the architecture with its entries, even if the latter are ambiguous such that they partially reflect the system state. We profited from an existing supercomputer to simulate complex architecture, that indeed exhibited a new emergent behavior. Based on these results we pursued a critical study that sets the perspective for future work.
205

Architectures de circuits nanoélectroniques neuro-inspirée / Neuro-inspired architectures for nano-circuits

Chabi, Djaafar 09 March 2012 (has links)
Les nouvelles techniques de fabrication nanométriques comme l’auto-assemblage ou la nanoimpression permettent de réaliser des matrices régulières (crossbars) atteignant des densités extrêmes (jusqu’à 1012 nanocomposants/cm2) tout en limitant leur coût de fabrication. Cependant, il est attendu que ces technologies s’accompagnent d’une augmentation significative du nombre de défauts et de dispersions de caractéristiques. La capacité à exploiter ces crossbars est alors conditionnée par le développement de nouvelles techniques de calcul capables de les spécialiser et de tolérer une grande densité de défauts. Dans ce contexte, l’approche neuromimétique qui permet tout à la fois de configurer les nanodispositifs et de tolérer leurs défauts et dispersions de caractéristiques apparaît spécialement pertinente. L’objectif de cette thèse est de démontrer l’efficacité d’une telle approche et de quantifier la fiabilité obtenue avec une architecture neuromimétique à base de crossbar de memristors, ou neurocrossbar (NC). Tout d’abord la thèse introduit des algorithmes permettant l’apprentissage de fonctions logiques sur un NC. Par la suite, la thèse caractérise la tolérance du modèle NC aux défauts et aux variations de caractéristiques des memristors. Des modèles analytiques probabilistes de prédiction de la convergence de NC ont été proposés et confrontés à des simulations Monte-Carlo. Ils prennent en compte l’impact de chaque type de défaut et de dispersion. Grâce à ces modèles analytiques il devient possible d’extrapoler cette étude à des circuits NC de très grande taille. Finalement, l’efficacité des méthodes proposées est expérimentalement démontrée à travers l’apprentissage de fonctions logiques par un NC composé de transistors à nanotube de carbone à commande optique (OG-CNTFET). / Novel manufacturing techniques, such as nanoscale self-assembly or nanoimprint, allow a cost-efficient way to fabricate high-density crossbar matrices (1012 nanodevices/cm2). However, it is expected that these technologies will be accompanied by a significant increase of defects and dispersion in device characteristics. Thus, programming these crossbars require new computational techniques that possess high tolerance for such variations. In this context, approaches based on neural networks are promising for configuring nanodevices, since they provide a natural way for tolerating low yields and device variations. The main objective of this thesis is to explore such a neural-network approach, by examining factors such as efficiency and reliability, using the memristor crossbar architecture or neurocrossbar (NC). We introduce algorithms for learning the logic functions on the NC, and the tolerance of NC against static defects (stuck-defect) and dispersion of device properties is discussed. Probabilistic analytical models for predicting the convergence of NC are proposed and compared with Monte Carlo simulations, which take into account the impact of each type of defect and dispersion. These analytical models can be extrapolated to study large-sized NCs. Finally, the effectiveness of the proposed methods is experimentally demonstrated through the learning of logic functions by a real NC made of Optically Gated Carbon Nanotube Field Effect Transistor (OG-CNTFET).
206

Caractérisation non destructive des matériaux composites en fatigue : diagnostic de l’état de santé et pronostic de la durée de vie résiduelle par réseaux de neurones / Nondestructive characterization of composite materials under fatigue loading : structural health diagnosis and remaining useful life prognostic using artificial neural networks

Duchene, Pierre 13 December 2018 (has links)
Ce travail de recherche consiste en la proposition d’une nouvelle approche de caractérisation non destructive de l’endommagement des matériaux composites (carbone/époxy) sollicités en fatigue par des essais d’auto-échauffement (blocs de chargements croissants). Cette approche est basée sur l’utilisation de plusieurs techniques non destructives appliquées in-situ, en temps réel ou différé, dont l’analyse est, soit redondante soit complémentaire. Au total, six techniques ont été utilisées (émission acoustique, thermographie infrarouge, corrélation d’images numériques, acousto-ultrasons, ultrasons C-scan et ondes de Lamb) et leurs résultats post-traités puis fusionnés à l’aide d’algorithmes basés sur les réseaux de neurones. Les résultats obtenus ont permis d’évaluer et de localiser l’endommagement du matériau et d’estimer sa durée de vie résiduelle. Ce faisant, plusieurs avancés scientifiques ont été obtenus en réalisant, par exemple, une localisation 2D des évènements acoustiques à l’aide seulement de deux capteurs avec une précision millimétrique, ou encore le développement d’une nouvelle technique imagée d’acousto-ultrasons permettant un contrôle hors contraintes de l’état d’endommagement du matériau, …et enfin, le pronostic de la durée de vie résiduelle du matériau basé sur une fusion de données par réseaux de neurones. / This research work consists in a new approach for non-destructive characterisation of damage in composite materials (carbon/epoxy) subjected to fatigue during self-heating tests (increasing load blocks). This approach is based on the use of several non-destructive techniques applied in-situ, in real time or delayed, whose analysis is either redundant or complementary. Six techniques were used (acoustic emission, infrared thermography, digital image correlation, acousto-ultrasound, C-scan ultrasound and lamb waves) and their post-processed results were merged using algorithms based on neural networks. The results obtained made it possible to assess and locate the damage of the material and to estimate its residual life. In doing so, several scientific advances have been obtained by, for example, carrying out a 2D localization of acoustic events using only two sensors with millimetric precision, or the development of a new pictorial acousto-ultrasonic technique allowing an control of the state of material damage at free stress conditions, ... and finally, the prognosis of the residual lifetime of the material based on a data fusion by neural networks.
207

Ecodynamique des éléments traces et caractérisation de l’exposition des sols contaminés : expérimentation et modélisation par les réseaux de neurones artificiels / Ecodynamics of trace elements (ET) and characterization of the exposure of contaminated phytoremediated soils : experimentation and modeling by artificial neural networks

Hattab, Nour 28 June 2013 (has links)
Les sols contaminés par les éléments traces potentiellement toxiques (PTTE) ont souvent des conséquences graves pour les écosystèmes terrestres. Plusieurs options de phytoremediaction ont été développées pour remédier les sols contaminés ; cependantl'efficacité et la capacité de ces techniques à réduire les concentrations excessives des éléments traces ou leur (phyto) disponibilité dans les sols contaminés doivent être évaluées Le présent travail s’est intéressé à étudier l'efficacité de deux options de de phytorémédiation, la phytostabilisation et la phytoextraction assistées par des amendements organiques et minéraux, à remédier les fortes concentrations de PTTE dans un sol naturel et dans un technosol contaminés. Les concentrations totales des éléments traces dissous ont été déterminées dans l'eau interstitielle du sol. L'intensité de l'exposition du sol a été évaluée par des capteurs DGT (gradient de diffusion dans les couches minces). Le phytodisponibilité des PTTE a été caractérisée par des tests de germination avec des haricots nains cultivés sur les sols contaminés pour lesquels les concentrations foliaires en éléments traces ont été déterminées. Ensuite un modèle de réseau de neurones artificiels a été appliqué pour comprendre les facteurs les plus pertinents sur la variabilité de la phytodisponibilité des PTTE. Les deux options ont étécapables de réduire les concentrations ou la phytodisponibilité des PTTE en présence des amendements. Les réseaux de neurones artificiels ont été très efficaces pour prédire les résultats manquants et pour déterminer les paramètres de contrôle de la variabilité de la phytodisponibilité des PTTE à partir des paramètres du sol. / Soils contaminated with potentially toxic trace elements (PTTE) often have serious consequences for terrestrial ecosystems. Several phytoremediaction have been developped to reclaim contaminated soils; however the efficiency and capacity of these techniques to reduce excessive concentrations of trace elements or their (phyto) availability in contaminated soils have to be assessed. The present work is focused on studying the effectiveness of two phyoremediation options such as phytostabilisation and phytoextraction assisted by organic and inorganic amendments to remediatethe high concentrations of PTTE in contaminated natural soils and technosoils. Total PTTE concentrations were determined in soil pore water (SPW) sampled by Rhizon soil moisture samplers. The soil exposure intensity was assessed by DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. Then a model of artificial neural network was applied to understand the factors most relevant for the variability on the phytoavailability of trace elements. Both options were found to be able to reduce the concentrations or phytoavailability of PTTE in the presence of amendments. The artificial neural network has been very effective to predict missing results and to determine the control parameters of the variability of the PTTE phytoavailoability from the soil parameters.
208

Traitement parcimonieux de signaux biologiques / Sparse processing of biological signals

Chollet, Paul 24 November 2017 (has links)
Les réseaux de capteurs corporels représentent un enjeu sociétal important en permettant des soins de meilleure qualité avec un coût réduit. Ces derniers sont utilisés pour détecter des anomalies dès leur apparition et ainsi intervenir au plus vite. Les capteurs sont soumis à de nombreuses contraintes de fiabilité, robustesse, taille et consommation. Dans cette thèse, les différentes opérations réalisées par les réseaux de capteurs corporels sont analysées. La consommation de chacune d'elles est évaluée afin de guider les axes de recherche pour améliorer l'autonomie énergétique des capteurs. Un capteur pour la détection d'arythmie sur des signaux cardiaques est proposé. Il intègre un traitement du signal via l'utilisation d'un réseau de neurone à cliques. Le système proposé est simulé et offre une exactitude de classification de 95 % pour la détection de trois types d'arythmie. Le prototypage du système via la fabrication d'un circuit mixte analogique/numérique en CMOS 65 nm montre une consommation du capteur de l'ordre de 1,4 μJ. Pour réduire encore plus l'énergie, une nouvelle méthode d'acquisition est utilisée. Une architecture de convertisseur est proposée pour l'acquisition et le traitement de signaux cardiaques. Cette dernière laisse espérer une consommation de l'ordre de 1,18 nJ pour acquérir les paramètres tout en offrant une exactitude de classification proche de 98 %. Cette étude permet d'ouvrir la voie vers la mise en place de capteurs très basse consommation pouvant durer toute une vie avec une simple pile. / Body area sensor networks gained great focused through the promiseof better quality and cheaper medical care system. They are used todetect anomalies and treat them as soon as they arise. Sensors are under heavy constraints such as reliability, sturdiness, size and power consumption. This thesis analyzes the operations perform by a body area sensor network. The different energy requirements are evaluated in order to choose the focus of the research to improve the battery life of the sensors. A sensor for arrhythmia detection is proposed. It includes some signal processing through a clique-based neural network. The system simulations allow a classification between three types of arrhythmia with 95 % accuracy. The prototype, based on a 65 nm CMOS mixed signal circuit, requires only 1.4 μJ. To further reduce energy consumption, a new sensing method is used. A converter architecture is proposed for heart beat acquisition. Simulations and estimation show a 1.18 nJ energy requirement for parameter acquisition while offering 98 % classification accuracy. This work leads the way to the development of low energy sensor with a lifetime battery life.
209

Generative models for natural images

Ahmed, Faruk 08 1900 (has links)
No description available.
210

Adhésion, croissance et polarisation de neurones sur substrats micro-et nano-structurés / Neuronal adhesion, growth and polarization on micro- and nano-structured substrates

Bugnicourt, Ghislain 21 December 2011 (has links)
Cette thèse s'intéresse au développement neuronal in vitro dans le but ultime d'enregistrer l'activité de réseaux de neurones à géométrie et connectivité contrôlées. Le développement neuronal est régi par un ensemble de régulations, intrinsèques mais également sous contrôle de facteurs extérieurs, qui permettent à la cellule d'adhérer à un substrat, de croître, et de se polariser. Une partie de ce travail de thèse explore deux types de contraintes physiques de l'environnement que sont la géométrie d'adhésion et la rugosité de surface. La première révèle l'implication des forces dans les stades précoces de développement neuronal régis par un phénomène de compétition neuritique, et permet in fine de contrôler la direction d'émission de l'axone, notamment par une inhibition de sa différenciation sur lignes ondulées. La seconde montre que la distribution des points d'adhésion peut accélérer la croissance jusqu'à favoriser la polarisation axonale. L'autre partie de ce travail s'attache à résoudre le problème technologique majeur qu'est le remplissage des sites d'adhésion par le biais d'une attraction magnétique, et démontre la possibilité de faire croître des réseaux neuronaux modèles sur nanotransistors. / This thesis focuses on in vitro neuronal development, with the long-term goal of building controlled neuron networks that would allow the recording of their electric activity. A collection of intrinsic regulations are involved in neuronal adhesion, growth and polarization, in such a way that the cell can adapt to changes in its environment. Nevertheless, this environment can affect the behavior of the cell through mechanisms that rely on biophysical signals or even physical properties of this environment. The work presented in this thesis is based on the modification of two main aspects of the physical environment: geometry of adhesion and surface roughness. On the one hand, the geometry is controlled by patterns of adhesions, giving the ability to design bipolar motifs that highligt the importance of mechanical forces in neuronal growth, and also more complex motifs that allow the control of neuronal polarization, in particular by an inhibition of axonal differenciation on curved lines. On the other hand, a roughness below the microscale creates a distribution of adhesion points that results in an increase in neuronal growth rate and even influences axonal polarization. The final part of this thesis focuses on the development of an innovative method for placing cells at precise locations on a substrate, by the help of magnetic traps. This method is the final step required for growing model neuron networks on our nanotransistors.

Page generated in 0.0675 seconds