231 |
Personalizace vědeckého portálu / Scientific Portal PersonalizationČáslavský, Josef January 2011 (has links)
This paper describes personalization of web applications and options of usage for scientific web portals. Theoretical part introduces main personalization principles and methods. Practical part of this paper focuses on resulting application. The application provides personalized services based on created user profile such as personalized search, content recommendation and conference planner.
|
232 |
SBAR främjar informationsöverföringen ur sjuksköterskans perspektiv : En litteraturstudie / SBAR promotes information transfer from a nurse perspectiveRydin, Gunilla January 2020 (has links)
Deficiency in the nurse's communication when transferring information can lead to serious consequences for the patient. It is often in transition between different teams or nursing units that deficiencies arise in the transfer of information, but the results of deficiencies can also arise throughout the care chain. The aim of this study was to elucidate the way in which SBAR facilitates nurse communication when transferring a patient within the health care system. This literature study was based on analysis of quantitative research. Seven quantitative articles were analysed using five step model by Friberg. The results of this study showed that SBAR helps the nurse to focus, prepare and structure the documentation and contributes to safer patient assessments. The use of SBAR leads to efficient reporting that promotes collaboration with other professions by making the message clear and structured. The conclusion was that by using SBAR as a communication tool for the nurse, patient safety increases.
|
233 |
Contributions empiriques sur l’offre et la demande de téléphonie mobile / Empirical contributions to the offer & demand on mobile communications market.Cadet, Thomas 17 December 2013 (has links)
L’objectif de cette thèse empirique est de contribuer à une meilleure compréhension du marché de la téléphonie mobile en étudiant les stratégies d’offres (et notamment la tarification) des opérateurs, ainsi que les comportements des consommateurs en termes d’usages et de recommandation. / We wish to contribute to the understanding of the mobile market by studying the pricing strategies of the operators, but also by studying the consumers behavior in terms of uses and recommendation.
|
234 |
Meven : An Enterprise Trust Recommender SystemAfzal, Usman, Islam, Md. Mustakimul January 2013 (has links)
Growing an online community takes time and effort. Relationships in an online community must be initiated based on trust followed by privacy, and then carefully cultivated. People are using web based social networks more than recent past, but they always want to protect their private data from unknown access; meanwhile also eager to know more people whom they are interested. Among all other system, trust based recommenders have been one of the most used and demanding system which takes the advantage of social trust to generate more accurate predictions. In this work we have proposed for Meven (An Enterprise trust-based profile recommendation with privacy), which uses Social Network Content (User Profiles and trends) with Trust and privacy control policy. The idea of system is to provide Social Networks with the ability to quickly find related information about the users having similar behaviors as the current user. The users will also be able to set the privacy metrics on their profiles so they will not get recommendation of those they feel less important and this is achieved by Privacy metrics. To generate accurate predictions, we defined trust between two users as a strong bond which is computed using different metrics based on user’s activities with respect to different content such as blogging, writing articles, commenting, and liking along with profile information such as organization, region, interests or skills. We have also introduced privacy metric in such a way so that users have full freedom to hide themselves from the recommendation system or they can also have the opportunity to customize their profiles to be visible to certain level of trustworthy users. We have exposed our application as a web service(api) so that any social network web portal can access the recommendations and publish them as a widget in social network.
|
235 |
Chinese Happiness Index and Its Influencing Factors AnalysisHu, Zimu January 2012 (has links)
In recent decades, economists are gradually showing their interests in the study of happiness. They even put forward some challenges to the traditional theories. In contrast, studies on Chinese happiness problem are not enough in terms of breadth and depth. This paper used the data provided by China General Social Survey to conduct an empirical analysis. The model author adopted is Ordered Discrete Choice model. In the empirical section, author analyzed the impact of income, macroeconomic variables, etc. Ultimately, based on the empirical results, author proposed some policy recommendations and further study suggestions.
|
236 |
Improving Recommendation Systems Using Image DataÅslin, Filip January 2022 (has links)
Recommendation systems typically use historical interactions between users and items topredict what other items can be of interest to a user. The recommendations are based onpatterns in how users interact similarly with items. This thesis investigates if it is possible toimprove the quality of the recommendations by including more information about the items inthe model that predicts the recommendations. More specifically, the use of deep learning toextract information from item images is investigated. To do this, two types of collaborativefiltering models, based on historic interactions, are implemented. These models are thencompared to different collaborative filtering models that either make use of user and itemattributes, or images of the items. Three pre-trained image classification models are used toextract useful item features from the item images. The models are trained and evaluated using adataset of historic transactions and item images from the online sports shop Stadium, given bythe thesis supervisor. The results show no noticeable improvement in performance for themodels using the images compared to the models without images. The model using the userand item attributes performs the best, indicating that the collaborative filtering models can beimproved by giving it more information than just the historic interactions. Possible ways tofurther investigate using the image feature vectors in collaborative filtering models, as well asusing them to create better item attributes, are discussed and suggested for future work.
|
237 |
Evaluation of Recommender System / Utvärdering av rekommendationssystemDing, Christofer January 2016 (has links)
Recommender System (RS) has become one of the most important component for many companies, such as YouTube and Amazon. A recommender system consists of a series of algorithms which predict and recommend products to users. This report covers the selection of many open source recommender system projects, and movie predictions are made using the selected recommender system. Based on the predictions, a comparison was made between precision and an improved precision algorithm. The selected RS uses singular value decomposition in the field of collaborative filtering. Based on the recommendation results produced by the RS, the comparison between precision and the improved precision algorithms showed that the result of improved precision is slightly higher than precision in different cutoff values and different dimensions of eigenvalues. / Rekommendationssystem har blivit en av de viktigaste beståndsdelar för många företag, såsom YouTube och Amazon. Ett rekommendationssystem består av en serie av algoritmer som förutsäger och rekommenderar produkter till användare. Denna rapport omfattar valet av många öppen källkod rekommendationssystem projekt, och filmprognoser görs med det valda rekommendationssystemet. Baserat på filmprognoser, gjordes en jämförelse mellan precision och en förbättrad precision algoritmer. Det valda rekommendationssystemet använder singulärvärdesuppdelning som kollaborativ filtrering. Baserat på rekommendationsresultat som produceras av rekommendationssystemet, jämförelsen mellan precision och den förbättrade precisions algoritmer visade att resultatet av förbättrad precision är något högre än precision i olika brytvärden och olika dimensioner av egenvärden.
|
238 |
Recommending new items to customers : A comparison between Collaborative Filtering and Association Rule Mining / Rekommendera nya produkter till kunder : En jämförelsestudie mellan Collaborative Filtering och Association Rule MiningSohlberg, Henrik January 2015 (has links)
E-commerce is an ever growing industry as the internet infrastructure continues to evolve. The benefits from a recommendation system to any online retail store are several. It can help customers to find what they need as well as increase sales by enabling accurate targeted promotions. Among many techniques that can form recommendation systems, this thesis compares Collaborative Filtering against Association Rule Mining, both implemented in combination with clustering. The suggested implementations are designed with the cold start problem in mind and are evaluated with a data set from an online retail store which sells clothing. The results indicate that Collaborative Filtering is the preferable technique while associated rules may still offer business value to stakeholders. However, the strength of the results is undermined by the fact that only a single data set was used. / E-handel är en växande marknad i takt med att Internet utvecklas samtidigt som antalet användare ständigt ökar. Antalet fördelar från rekommendationssytem som e-butiker kan dra nytta av är flera. Samtidigt som det kan hjälpa kunder att hitta vad de letar efter kan det utgöra underlag för riktade kampanjer, något som kan öka försäljning. Det finns många olika tekniker som rekommendationssystem kan vara byggda utifrån. Detta examensarbete ställer fokus på de två teknikerna Collborative Filtering samt Association Rule Mining och jämför dessa sinsemellan. Båda metoderna kombinerades med klustring och utformades för att råda bot på kallstartsproblemet. De två föreslagna implementationerna testades sedan mot en riktig datamängd från en e-butik med kläder i sitt sortiment. Resultaten tyder på att Collborative Filtering är den överlägsna tekniken samtidigt som det fortfarande finns ett värde i associeringsregler. Att dra generella slutsatser försvåras dock av att enbart en datamängd användes.
|
239 |
System för automatiska rekommendationer av nyheter och evenemang / Systems for automatic recommendations of news and eventsBrandt, Theodor January 2015 (has links)
Teknik och data är nyckeln till att Bonnier Business Media (BBM) ska kunna nå sina mål och leverera ytterligare tillväxt. Därför vill man ligga i framkant när det gäller att undersöka nya tekniker som kan förbättra plattformarna och göra dem mer tidsenliga. BBM har bland annat velat ta fram ett rekommendationssystem som ska användas till att göra innehållet individanpassat på webbplatserna och på ett effektivt sätt presentera detta så att de olika målgrupperna får den information de förväntar sig. Till exempel ska besökaren kunna få förslag på artiklar och evenemang som kan vara av intresse. Målet med detta examensarbete har varit att ta fram en prototyp för ett rekommendationssy- stem med tillhörande algoritmer. Prototypen skulle kunna användas som ett “koncepttest” för att undersöka möjligheten att skapa personliga rekommendationer till läsare på Veckans Affärers webbplats, va.se. Implementationen av rekommendationssystem som togs fram till BBM bestod av en objektbaserad kollaborativ filtrerings algoritm som använde besökarnas beteende, publiceringsdatum och popularitet på artiklarna och evenemangen för att skapa individuella rekommendationer. Efter genomförda tester och analyser visar resultatet att det är fullt möjligt att skapa personliga rekommendationer som har en högre precision än vad ett grundläggande rekommendationssystem, till exempel en popularitetslista, kan erbjuda. / Technology is the key for Bonnier Business Media (BBM) to reach their goals and deliver future growth. Therefore they want to be in the very forefront when it comes to exploring new technologies that can improve their platforms and make them more up to date. BBM has among other things aimed to develop a recommendation system that is supposed to make the content of their web sites personalized and in an efficient way present this so that the different target groups will get the information that they expect. For example the visitor should be able to get suggestions on articles and events that might be of interest. The aim of this thesis has been to develop a prototype of a recommendation system with associated algorithms. The prototype could be used as to examine the possibility to create personalized recommendations for the readers on BBM:s website va.se (Veckans Affärer). The implementation of the recommendation system that was developed for BBM consisted of an object-based collaborative filtering algorithm using visitor behavior, publication date and popularity of articles and events to create personalized recommendations. After com- pleting tests and analyzes the results show that it is possible to create recommendations with a higher precision than a basic recommendation system, like a popularity list, can of- fer.
|
240 |
Personalized TV with Recommendations : Integrating Social NetworksShahan, Michel January 2008 (has links)
This master’s thesis concerns how to recommend multimedia content which a user might view – with some media player. It describes how a computer application (called a recommendation engine) can generate better recommendations for users based on using information available from social networks and the media selections made by others. This thesis gives an introduction to the area of “recommendations”, recommendation engines, and social networks. An overview of existing recommendation techniques suggests potential solutions to the problem of what recommendations to make to a given user. The thesis presents how social networks can be used to further enhance the users’ experience and describes the work that has been done to realize this recommendation system. An evaluation of the implemented solution is given. The thesis concludes with a summary of how recommendation engines and social network technologies can be used and suggests some future work. This thesis is of current interest since there is a tremendous quantity of content which is being offered in stores and via services on the web. A recommendation system makes it easier for users to find content which they find appropriate. Since social network communities are growing rapidly there has been an interest to use this information to get recommendations from friends. The results from the evaluation of the prototype recommendation system show how social networks which utilize trust systems might affect the recommendation which is given. / Det här examensarbetet behandlar hur man kan rekommendera multimedia som en användare kan tänkas titta på. Den beskriver hur en dataapplikation (kallad rekommendationsmotor) kan generera bättre rekommendationer åt en användare genom att använda information från sociala nätverk, och andra användares tidigare val av media. Examensarbetet ska ge en introduktion in om ämnet ”rekommendationer”, rekommendationsmotorer och sociala nätverk. En överblick av existerande rekommendationstekniker ger potentiella lösningar till problem för rekommendationer till en användare. Examensarbetet ska även presentera hur sociala nätverk vidare kan förbättra användarupplevelsen och beskriva arbeten som har gjorts för att realisera. En evaluering av det implementerade systemet kommer att ges. En slutsats om hur rekommendations motorer och sociala nätverk kan användas och hur man kan fortsätta på arbetet kommer avsluta rapporten. Examensarbetet är intressant eftersom det finns rikligt av tjänster och produkter på nätet som utnyttjar rekommendationsmotorer. Rekommendationssystem ser till att användare enklare kan hitta information som anses lämplig för användaren. Eftersom även sociala nätverk är en växande trend finns det intresse att använda den här informationen till att ge rekommendationer från vänner. Resultatet från evalueringen av det utvecklade systemet kommer att visa en intressant slutsats om hur sociala nätverk som utnyttjar ”trust” system kan påverka rekommendationen.
|
Page generated in 0.0215 seconds