• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 10
  • Tagged with
  • 24
  • 24
  • 24
  • 21
  • 21
  • 19
  • 15
  • 14
  • 12
  • 12
  • 10
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] AUV AUTO-DOCKING APPROACH BASED ON REINFORCEMENT LEARNING AND VISUAL SERVOING / [pt] TÉCNICA DE ACOPLAGEM AUTOMÁTICA DE AUV BASEADA EM APRENDIZADO POR REFORÇO E SERVOVISÃO

MATHEUS DO NASCIMENTO SANTOS 24 January 2024 (has links)
[pt] No campo em crescimento da robótica subaquática, Veículos Subaquáticos Automatizados (AUVs) estão se tornando cada vez mais importantes para uma variedade de usos, como exploração, mapeamento e inspeção. Esta dissertação foca em estudar os principais desafios da acoplagem automática de AUVs, considerando um ambiente 3D simulado personalizado. A pesquisa divide essa tarefa em duas partes principais: estimativa da pose da garagem e estratégia de controle do AUV. Utilizando uma mistura de métodos tradicionais e novos, incluindo sistemas baseados em marcos fiduciais, Redes Neurais Convolucionais (CNN) e Aprendizado por Reforço (RL), o estudo realiza experimentos para verificar o desempenho e as limitações do sistema. Um aspecto significativo desta dissertação é o uso de um ambiente 3D simulado para facilitar o desenvolvimento e o teste de algoritmos de acoplagem automática para AUVs. Este ambiente simula dinâmicas subaquáticas, sensores robóticos e atuadores, permitindo experimentar diferentes técnicas de estimativa de pose e estratégias de controle. Além disso, o estabelecimento de um ambiente 3D simulado amigável para RL representa uma contribuição relevante, oferecendo uma plataforma reutilizável que não apenas valida os algoritmos de acoplagem automática desenvolvidos neste estudo, mas também serve como base para futuras aplicações subaquáticas baseadas em RL. Em resumo, a dissertação explora uma série de cenários para avaliar a eficácia de várias técnicas de acoplagem automática. Inicialmente, ela utiliza servo-visualização junto com um controlador PID tradicional, seguido pela introdução de métodos mais avançados, como estimadores de pose baseados em CNN e controladores de Aprendizado por Reforço. Esses métodos são avaliados tanto individualmente quanto em combinações híbridas para medir sua adequação e limitações para entender os principais desafios por trás da acoplagem automática de AUVs. / [en] In the growing field of underwater robotics, Automated Underwater Vehicles (AUVs) are becoming more important for a range of uses, such as exploration, mapping, and inspection. This dissertation focuses on studying the main challenges of AUV auto-docking, considering a customized 3D simulated environment. The research breaks down this challenging task into two main parts: cage pose estimation and AUV control strategy. Using a mix of traditional and new methods, including fiducial-based systems, Convolutional Neural Networks (CNN), and Reinforcement Learning (RL), the study carries out experiments to check system performance and limitations. A significant aspect of this dissertation is using a 3D simulated environment to facilitate the development and testing of auto-docking algorithms for AUVs. This environment simulates crucial underwater dynamics, robotic sensors, and actuators, allowing for experimenting with different pose estimation techniques and control strategies. Additionally, the establishment of an RL-friendly 3D simulated environment stands as a relevant contribution, offering a reusable platform that not only validates the auto-docking algorithms developed in this study but also serves as a foundation for future RL-based underwater applications. In summary, the dissertation explores a range of scenarios to evaluate the efficacy of various auto-docking techniques. It initially utilizes visual servoing along with a traditional PID controller, followed by the introduction of more advanced methods like CNN-based pose estimators and Reinforcement Learning controllers. These methods are assessed both individually and in hybrid combinations to gauge their suitability and limitations for understanding the main challenges behind the AUV auto-docking.
12

[en] CONVOLUTIONAL NETWORKS APPLIED TO SEISMIC NOISE CLASSIFICATION / [pt] REDES CONVOLUCIONAIS APLICADAS À CLASSIFICAÇÃO DE RUÍDO SÍSMICO

EDUARDO BETINE BUCKER 24 March 2021 (has links)
[pt] Modelos baseados em redes neurais profundas como as Redes Neurais Convolucionais proporcionaram avanços significativos em diversas áreas da computação. No entanto, essa tecnologia é ainda pouco aplicada à predição de qualidade sísmica, que é uma atividade relevante para exploração de hidrocarbonetos. Ser capaz de, rapidamente, classificar o ruído presente em aquisições de dados sísmicos permite aceitar ou rejeitar essas aquisições de forma eficiente, o que além de economizar recursos também melhora a interpretabilidade dos dados. Neste trabalho apresenta-se um dataset criado a partir de 6.918 aquisições manualmente classificadas pela percepção de especialistas e pesquisadores, que serviu de base para o treinamento, validação e testes de um classificador, também proposto neste trabalho, baseado em uma rede neural convolucional. Em resultados empíricos, observou-se-se um F1 Score de 95,58 porcento em uma validação cruzada de 10 folds e 93,56 porcento em um conjunto de holdout de teste. / [en] Deep Learning based models, such as Convolutional Neural Networks (CNNs), have led to significant advances in several areas of computing applications. Nevertheless, this technology is still rarely applied to seismic quality prediction, which is a relevant task in hydrocarbon exploration. Being able to promptly classify noise in common shot gather(CSG) acquisitions of seismic data allows the acceptance or rejection of those aquisitions, not only saving resources but also increasing the interpretability of data. In this work, we introduce a real-world classification dataset based on 6.918 common shot gather, manually labeled by perception of specialists and researches. We use it to train a CNN classification model for seismic shot-gathers quality prediction. In our empirical evaluation, we observed an F1 Score of 95,58 percent in 10 fold cross-validation and 93,56 percent in a Holdout Test.
13

[pt] DESENVOLVIMENTO DE MODELOS UTILIZANDO INTELIGÊNCIA ARTIFICIAL PARA PROBLEMAS DE GARANTIA DE ESCOAMENTO NA INDÚSTRIA DE PETRÓLEO / [en] DEVELOPMENT OF ARTIFICIAL INTELLIGENCE MODELS APPLIED TO THE FLOW ASSURANCE PROBLEMS IN THE OIL AND GAS INDUSTRY

BRUNO XAVIER FERREIRA 10 November 2022 (has links)
[pt] Uma preocupação significativa durante a produção de óleo e gás é a garantia de escoamento para evitar desperdício de tempo e dinheiro. Devido às mudanças nas condições durante a produção (como pressão e temperatura), principalmente na região do pré-sal brasileiro, a solubilidade dos componentes do petróleo bruto (óleo-gás-água) pode diminuir, resultando na formação de depósitos. A incrustação é geralmente causada por parafina, hidratos e sal inorgânico. Neste trabalho, foram desenvolvidos modelos utilizando estratégias de Aprendizado de Máquina para monitoramento da formação de incrustações inorgânicas e medição de parâmetros de processo associados com formas de remediação de obstruções de outras fontes. Primeiramente, foram criados modelos do processo de formação de incrustação de carbonato de cálcio na presença de monoetilenoglicol (inibidor de hidrato) usando a arquitetura de redes neurais feedfoward prever o pressão diferencial um e cinco instantes à frente, obtendo um R2 superior a 92,9 porcento para ambos os horizontes de predição. O segundo tópico explorado foi desenvolver modelos para determinação do pH em sistemas pressurizados (até 6,0 MPa) por meio de análise de imagens. Podendo ser aplicados no monitoramento de sistemas como Sistema Gerador de Nitrogênio, utilizado para remediar alguns problemas de incrustação, dado que sua cinética depende fortemente do pH do sistema. Foram criados modelos de classificação para o pH do sistema (2, 3, 4, 5, 6, 7, 8, 9, 10) usando Redes Neurais Convolucionais (CNN), Máquina de Vetor de Suporte e Árvores de Decisão. Além disso, modelos CNN foram construídos para predizer o pH na faixa de 2- 10. / [en] A significant concern during oil and gas production is flow assurance to avoid loss of time and money. Due to production conditions changes (such as pressure and temperature), especially in the Brazilian pre-salt region, the solubility of the components of the crude oil (oil-gas-water) can decrease, resulting in the formation of deposits. The fouling is usually caused by wax, gas hydrate, and inorganic salt (scale). In this work, models were developed using Machine Learning strategies for scale formation monitoring and measuring process parameters associated with remediation of obstruction from other sources. First, models for the calcium carbonate scaling formation process in the presence of monoethylene glycol (typical gas hydrate inhibitor) were created using feedforward neural network architecture to predict the differential pressure (deltaP) one and five steps ahead, obtaining an R2 higher than 92.9 percent for the training and test group for both the prediction horizon. The second approach explored was the development of models for determining the pH in atmospheric and pressurized systems (up to 6.0 MPa) using image analysis. These models could be applied to control and monitor the Nitrogen Generation System, which can be used for different flow assurance problems, and its kinetics strongly depend on the system s pH value. This step initially created classification models for the system pH (2, 3, 4, 5, 6, 7, 8, 9, 10) using the Convolution Neural Networks (CNN), Support Vector Machine, and decision tree architectures. Also, CNN models were built to predict the pH in the range of 2-10.
14

Rede neural convolucional aplicada à identificação de equipamentos residenciais para sistemas de monitoramento não-intrusivo de carga / Convolutional neural network applied to the identification of residential equipment for non-intrusive load monitoring systems

PENHA, Deyvison de Paiva 03 April 2018 (has links)
Submitted by Kelren Mota (kelrenlima@ufpa.br) on 2018-06-25T18:48:12Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_RedeNeuralConvolucional.pdf: 2088560 bytes, checksum: 6328f6f59bc552055a366b1e4a32793d (MD5) / Approved for entry into archive by Kelren Mota (kelrenlima@ufpa.br) on 2018-06-25T18:48:32Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_RedeNeuralConvolucional.pdf: 2088560 bytes, checksum: 6328f6f59bc552055a366b1e4a32793d (MD5) / Made available in DSpace on 2018-06-25T18:48:32Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_RedeNeuralConvolucional.pdf: 2088560 bytes, checksum: 6328f6f59bc552055a366b1e4a32793d (MD5) Previous issue date: 2018-04-03 / Este trabalho apresenta a proposta de uma nova metodologia para identificação de equipamentos residenciais em sistemas de Monitoramento Não-Intrusivo de cargas. O sistema é baseado em uma Rede Neural Convolucional para classificação dos equipamentos, que utilizam, diretamente como entradas para o sistema, os dados do sinal transitório de potência de 7 equipamentos obtidos no momento em que estes são ligados em uma residência. A metodologia foi desenvolvida usando dados de um banco de dados público (REED) que apresenta dados coletados a uma baixa frequência (1 Hz). Os resultados obtidos na base de dados de testes apresentam acurácia superior a 90%, indicando que o sistema proposto é capaz de realizar a tarefa de identificação, além disso os resultados apresentados são considerados satisfatórios quando comparados com os resultados já apresentados na literatura para o problema em questão. / This research presents the proposal of a new methodology for the identification of residential equipment in non-intrusive load monitoring systems. The system is based on a Convolutional Neural Network to classify residential equipment, which uses directly as inputs to the system, the transient power signal data of 7 equipment obtained at the moment they are connected in a residence. The methodology was developed using data from a public database (REED) that presents data collected at a low frequency (1 Hz). The results obtained in the test database show an accuracy of more than 90%, indicating that the proposed system is capable of performing the task of identification. In addition, the results presented are considered satisfactory when compared with the results already presented in the literature for the problem in question.
15

Reconhecimento de produtos por imagem utilizando palavras visuais e redes neurais convolucionais / Image recognition of products using bag of visual words and convolutional neural networks

Juraszek, Guilherme Defreitas 15 December 2014 (has links)
Made available in DSpace on 2016-12-12T20:22:53Z (GMT). No. of bitstreams: 1 Guilherme Defreitas Juraszek.pdf: 7449714 bytes, checksum: 9caf50824709b584d611d1086803286b (MD5) Previous issue date: 2014-12-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The popularization of electronic devices like cameras and smartphones resulted in an increasing volume of images and videos available on the internet. This scenario allowed researchers to explore new search and retrieval techniques to use, not only the wide available text, but also extract information directly from images and videos. In this work three image recognition techniques have been compared, the Bag of Features or Bag of Visual Words (BOVW) using artificial descriptors, Convolutional Neural Networks (CNN) and CNN as a natural descriptor where the descriptors are obtained from a large pre-trained CNN in a different dataset. The techniques are applied in the image recognition problem using image analysis. Those techniques can be applied in products search applications using smartphones, smart glasses, products recognition in videos and others. The BOVW technique is demonstrated using the artificial descriptors SIFT, SURF and MSER, with dense and interest points based extraction. The algorithms KMeans and unsupervised Optimum-Path Forest (OPF-U) are used for clustering and supervised Optimum-Path Forest (OPF-S) and Support Vector Machines (SVM) are used for classification. The second technique uses a convolutional neural network (CNN) with three convolutional layers. The third technique uses the Overfeat, a large pre-trained CNN in the ImageNet dataset, for extraction of a characteristic vector of the new image dataset. This characteristic vector act as a natural descriptor and is then classified using OPF-S and SVM. The accuracy, total time of processing, time for clustering (KMeans and OPF-U), time for classification (OPF-S and SVM) are evaluated in the Caltech 101 dataset and in a dataset created by the author with images of products (Recog- Prod). It is evaluated how image size, category size and overall parameters affect the accuracy of the studied techniques. The results showed that the CNN (Overfeat), pre-trained in a different large dataset, used for extraction of the natural descriptor of the new dataset and trained with SVM achieved the best accuracy with 0.855 in the Caltech 101 dataset and 0.905 in the authors dataset. The CNN created and trained entirely by the author showed the second best result with the accuracy of 0.710, using the RGB color space in the authors dataset and 0.540 using the YUV color space in the Caltech 101 dataset. Both CNN, using RGB and YUV, showed similar accuracies but the CNN using YUV images took significant less time to be trained. The BOVW technique resulted in a accuracy lower than the preview techniques in both tested datasets. In the experiments using the author s dataset with different category sizes (5, 10, 15, 36) the CNN as a natural descriptor resulted in the best accuracy among the other tested techniques. The CNN as a natural descriptor is also the most robust, since as the number of the categories is increased, and resulted in a lower accuracy decay among the others. In the experiments with a dataset with 5 categories the CNN as natural descriptor was able to recognize all the images correctly. / A popularização de equipamentos como câmeras e celulares equipados com câmeras resultou em um grande volume de informações no formato de imagens e vídeos disponibilizadas na internet. O crescimento no volume de informação digital disponível nestes formatos demanda a criação de novas soluções de buscas baseadas não apenas em texto, mas capazes de extraírem informações relevantes diretamente desses formatos de mídia. Neste trabalho são comparadas as técnicas de reconhecimento utilizando palavras visuais por meio de descritores artificiais Bag of Visual Words ou Bag of Features (BOVW), reconhecimento utilizando redes neurais convolucionais (CNN) e reconhecimento usando descritores naturais obtidos através de uma rede neural convolucional previamente treinada em uma base distinta. As técnicas são aplicadas no problema de reconhecimento de produtos a partir da análise de imagens. Tais técnicas podem ser aplicadas em uma ampla gama de sistemas como reconhecimento de produtos utilizando dispositivos móveis, obtenção de informações de produtos visualizados utilizando um óculos de realidade aumentada, reconhecimento de produtos em vídeos, entre outros. A técnica BOVW é demonstrada com base nos descritores artificiais SIFT, SURF e MSER com extração de características densa e por meio de pontos de interesse. São estudados os algoritmos KMeans e Floresta de Caminhos Ótimos não Supervisionada (OPFU) na etapa de agrupamento e Máquinas de Vetor de Suporte (SVM) e Floresta de Caminhos Ótimos Supervisionada (OPF-S) na etapa de classificação. A segunda técnica utiliza uma rede neural convolucional (CNN) de três camadas. Na terceira técnica é utilizada uma CNN, previamente treinada na base de imagens ImageNet, de cinco camadas convolucionais. A CNN previamente treinada é utilizada para a extração de um vetor de características do novo conjunto de imagens a ser analisado. Este vetor atua como um descritor natural e é classificado utilizando SVM e OPF-S. São avaliadas a acurácia, tempo de processamento total, tempo de processamento para agrupamento (KMeans e OPF-U), tempo de processamento para classificação das técnicas nas bases de imagens Caltech 101 e em uma base de imagens de produtos criada pelo autor (RecogProd). São avaliados ainda como o tamanho da imagens, quantidade de categorias e escolha dos parâmetros influenciam na acurácia do resultado. Os resultados mostram que a utilização de uma CNN (Overfeat), previamente treinada em uma grande base de imagens, como um descritor natural para extração de um vetor de características e treinamento de um classificador SVM, apresentou a melhor acurácia com 0,855 na base Caltech101 e 0,905 na base criada, RecogProd, em uma escala de 0 a 1. A CNN criada e treinada pelo autor apresentou o segundo melhor resultado com 0,710 utilizando o espaço de cores RGB na RecogProd e 0,540 utilizando o espaço de cores YUV na base Caltech101. A CNN treinada com imagens utilizando os espaço de cores RGB e YUV apresentaram acurácias muito próximas em ambas as bases de treinamento porém, o treinamento utilizando YUV foi muito mais rápido. A técnica BOVW apresentou uma acurácia inferior à CNN como descritor natural e a CNN em ambas as bases testadas. Nos experimentos, com diversos tamanhos de categorias (5, 10, 15 e 36) da RecogProd, a CNN como descritor natural apresentou novamente a melhor acurácia. Os resultados mostram ainda que, conforme o número de categorias é aumentado, a CNN como descritor natural apresentou uma queda menor na acurácia em relação às demais técnicas avaliadas. Foi observado ainda que em uma base com 5 categorias a CNN como descritor natural alcançou a acurácia de 1,0, sendo capaz de classificar todos os exemplos corretamente.
16

[en] USE OF DEEP CONVOLUTIONAL NEURAL NETWORKS IN AUTOMATIC RECOGNITION AND CLASSIFICATION OF COAL MACERALS / [pt] USO DE REDES NEURAIS CONVOLUCIONAIS PROFUNDAS PARA RECONHECIMENTO E CLASSIFICAÇÃO AUTOMÁTICAS DE MACERAIS DE CARVÃO

RICHARD BRYAN MAGALHAES SANTOS 09 November 2022 (has links)
[pt] Diferentemente de muitas outras rochas, o carvão é uma rocha sedimentar composta principalmente de matéria orgânica derivada de detritos vegetais, acumulados em turfeiras em diferentes períodos geológicos. O carvão é um recurso econômico essencial em muitos países, tendo sido a principal força motriz por trás da revolução industrial. O carvão é amplamente utilizado industrialmente para diversos fins: carbonização e produção de coque, produção de ferro/aço, carvão térmico para gerar eletricidade, liquefação e gaseificação. A utilização do carvão é ditada pelas suas propriedades que são geralmente classificadas como sua composição, rank e grau. A composição do carvão, em termos dos seus macerais, e a sua classificação são determinadas manualmente por um petrógrafo, devido à sua natureza complexa. Este estudo almejou desenvolver um método automático baseado na aprendizagem de máquina para segmentação automática de macerais a nível de grupo e um módulo para determinação de rank por refletância em imagens petrográficas do carvão que pode melhorar a eficiência deste processo e diminuir a subjetividade do operador. foi desenvolvida uma abordagem de aprendizagem profunda da arquitetura baseada na Mask R-CNN para identificar e segmentar o grupo de maceral vitrinite, o qual é fundamental para a análise do rank, uma vez que a classificação é determinada pela reflectância da collotelinite (maceral desse grupo). Em segundo lugar, foi desenvolvido um método de processamento de imagem para analisar as imagens segmentadas de vitrinite e determinar a classificação do carvão, associando os valores cinzentos à reflectância. Para a segmentação de maceral, foram utilizadas cinco amostras para treinar a rede, 174 imagens foram utilizadas para treino, e 86 foram utilizadas para validação, com os melhores resultados obtidos para os modelos de vitrinite, inertinita, liptinita e colotelinita (89,23%, 68,81%, 37,00% e 84,77% F1-score, respectivamente). Essas amostras foram utilizadas juntamente com outras oito amostras para determinar os resultados de classificação utilizando a reflectância de collotelinite. As amostras variaram entre 0,97% e 1,8% de reflectância. Este método deverá ajudar a poupar tempo e mão-de-obra para análise, se implementado num modelo de produção. O desvio médio quadrático entre o método proposto e os valores de reflectância de referência foi de 0,0978. / [en] Unlike most other rocks, coal is a sedimentary rock composed primarily of organic matter derived from plant debris that accumulated in peat mires during different geological periods. Coal is also an essential economic resource in many countries, having been the main driving force behind the industrial revolution. Coal is still widely used industrially for many different purposes: carbonization and coke production, iron/steel making, thermal coal to generate electricity, liquefaction, and gasification. The utility of the coal is dictated by its properties which are commonly referred to as its rank, type, and grade. Coal composition, in terms of its macerals, and its rank determination are determined manually by a petrographer due to its complex nature. This study aimed to develop an automatic method based on machine learning capable of maceral segmentation at group level followed by a module for rank reflectance determination on petrographic images of coal that can improve the efficiency of this process and decrease operator subjectivity. Firstly, a Mask R-CNN-based architecture deep learning approach was developed to identify and segment the vitrinite maceral group, which is fundamental for rank analysis, as rank is determined by collotelinite reflectance (one of its individual macerals). Secondly, an image processing method was developed to analyze the vitrinite segmented images and determine coal rank by associating the grey values with the reflectance. For the maceral (group) segmentation, five samples were used to train the network, 174 images were used for training, and 86 were used for testing, with the best results obtained for the vitrinite, inertinite, liptinite, and collotelinite models (89.23%, 68.81%, 37.00% and 84.77% F1-score, respectively). Those samples were used alongside another eight samples to determine the rank results utilizing collotelinite reflectance. The samples ranged from 0.97% to 1.8% reflectance. This method should help save time and labor for analysis if implemented into a production model. The root mean square calculated between the proposed method and the reference reflectance values was 0.0978.
17

[pt] APRENDIZADO PROFUNDO APLICADO NA LOCALIZAÇÃO DE CORPOS ESTRANHOS FERROMAGNÉTICOS EM HUMANOS / [en] DEEP LEARNING APPLIED TO LOCATING FERROMAGNETIC FOREIGN BODIES IN HUMANS

MARCOS ROGOZINSKI 19 January 2022 (has links)
[pt] Corpos estranhos ferromagnéticos inseridos acidentalmente em pacientes geralmente precisam de remoção cirúrgica. Os métodos convencionalmente empregados para localizar corpos estranhos são frequentemente ineficazes devido à baixa precisão na determinação da posição do objeto e representam riscos decorrentes da exposição da equipe médica e dos pacientes à radiação ionizante durante procedimentos de longa duração. Novos métodos utilizando sensores SQUID têm obtido sucesso na localização de corpos estranhos de forma inócua e não invasiva, mas têm a desvantagem de apresentar alto custo e baixa portabilidade. Este trabalho faz parte de pesquisas que buscam trazer maior portabilidade e baixo custo na localização de corpos estranhos no corpo humano utilizando sensores GMI e GMR. O objetivo principal deste trabalho é avaliar e aplicar o uso de Aprendizado Profundo para a localização de corpos estranhos ferromagnéticos no corpo humano utilizando um dispositivo portátil e manual baseado em magnetômetro GMR, incluindo o rastreamento da posição e orientação deste dispositivo a partir de imagens de padrões conhecidos obtidas por uma câmera integrada ao dispositivo e a solução do problema inverso magnético a partir do mapeamento magnético obtido. As técnicas apresentadas se mostraram capazes de rastrear o dispositivo com boa precisão e detectar a localização do corpo estranho com resultados semelhantes ou melhores do que os obtidos em trabalhos anteriores, dependendo do parâmetro. Os resultados obtidos são promissores como base para desenvolvimentos futuros. / [en] Ferromagnetic foreign bodies accidentally inserted in patients usually need to be surgically removed. The methods conventionally employed for locating foreign bodies are often ineffective due to the low accuracy in determining the position of the object and pose risks arising from the exposure of medical staff and patients to ionizing radiation during long-term procedures. New methods using SQUID sensors successfully located foreign bodies in an innocuous and noninvasive way, but they have the drawback of presenting high cost and low portability. This work is part of new research that seeks to bring greater portability and low cost in locating foreign bodies in the human body using GMI and GMR sensors. The main objective of this work is to evaluate and apply the use of Deep Learning in the development of a portable and manual device based on a GMR sensor, including position tracking and orientation of this device from images of known patterns obtained by a camera integrated to the device and the solution of the inverse magnetic problem from the obtained magnetic mapping. The techniques presented are capable of tracking the device with good accuracy and detecting the localization of the foreign body with similar or better results than those obtained in previous works, depending on the parameter. The results obtained are promising as a basis for future developments.
18

[en] SUPER-RESOLUTION IN TOMOGRAPHIC IMAGES OF IRON ORE BRIQUETTES EMPLOYING DEEP LEARNING / [pt] SUPER-RESOLUÇÃO EM IMAGENS TOMOGRÁFICAS DE BRIQUETES DE MINÉRIO DE FERRO UTILIZANDO APRENDIZADO PROFUNDO

BERNARDO AMARAL PASCARELLI FERREIRA 11 October 2023 (has links)
[pt] A indústria mineral vem presenciando, ao longo das últimas décadas, uma redução da qualidade de minério de ferro extraído e o surgimento de novas demandas ambientais. Esta conjuntura fortalece a busca por produtos provenientes do minério de ferro que atendam aos requisitos da indústria siderúrgica, como é o caso de novos aglomerados de minério de ferro. A Microtomografia de Raios-X (microCT) permite a caracterização da estrutura tridimensional de uma amostra, com resolução micrométrica, de forma não-destrutiva. Entretanto, tal técnica apresenta diversas limitações. Quanto melhor a resolução, maior o tempo de análise e menor o volume de amostra adquirido. Modelos de Super Resolução (SR), baseados em Deep Learning, são uma poderosa ferramenta para aprimorar digitalmente a resolução de imagens tomográficas adquiridas em pior resolução. Este trabalho propõe o desenvolvimento de uma metodologia para treinar três modelos de SR, baseados na arquitetura EDSR, a partir de imagens tomográficas de briquetes de redução direta: Um modelo para aumento de resolução de 16 um para 6 um, outro para aumento de 6 um para 2 um, e o terceiro para aumento de 4 um para 2 um. Esta proposta tem como objetivo mitigar as limitações do microCT, auxiliando o desenvolvimento de novas metodologias de Processamento Digital de Imagens para os aglomerados. A metodologia inclui diferentes propostas para avaliação do desempenho da SR, como comparação de PSNR e segmentação de poros. Os resultados apontam que a SR foi capaz de aprimorar a resolução das imagens tomográficas e mitigar ruídos habituais da tomografia. / [en] The mining industry has been witnessing a reduction of extracted iron ore s quality and the advent of new environmental demands. This situation reinforces a search for iron ore products that meet the requirements of the steel industry, such as new iron ore agglomerates. X-ray microtomography (microCT) allows the characterization of a sample s three-dimensional structure, with micrometer resolution, in a non-destructive analysis. However, this technique presents several limitations. Better resolutions greatly increase analysis time and decrease the acquired sample’s volume. Super-Resolution (SR) models, based on Deep Learning, are a powerful tool to digitally enhance the resolution of tomographic images acquired at lower resolutions. This work proposes the development of a methodology to train three SR models, based on EDSR architecture, using tomographic images of direct reduction briquettes: A model for enhancing the resolution from 16 um to 6 um, another for enhancing from 6 um to 2 um, and the third for enhancing 4 um to 2 um. This proposal aims to mitigate the limitations of microCT, assisting the development and implementation of new Digital Image Processing methodologies for agglomerates. The methodology includes different proposals for SR s performance evaluation, such as PSNR comparison and pore segmentation. The results indicate that SR can improve the resolution of tomographic images and reduce common tomography noise.
19

[pt] APLICAÇÕES DE APRENDIZADO PROFUNDO NO MONITORAMENTO DE CULTURAS: CLASSIFICAÇÃO DE TIPO, SAÚDE E AMADURECIMENTO DE CULTURAS / [en] APPLICATIONS OF DEEP LEARNING FOR CROP MONITORING: CLASSIFICATION OF CROP TYPE, HEALTH AND MATURITY

GABRIEL LINS TENORIO 18 May 2020 (has links)
[pt] A eficiência de culturas pode ser aprimorada monitorando-se suas condições de forma contínua e tomando-se decisões baseadas em suas análises. Os dados para análise podem ser obtidos através de sensores de imagens e o processo de monitoramento pode ser automatizado utilizando-se algoritmos de reconhecimento de imagem com diferentes níveis de complexidade. Alguns dos algoritmos de maior êxito estão relacionados a abordagens supervisionadas de aprendizagem profunda (Deep Learning) as quais utilizam formas de Redes Neurais de Convolucionais (CNNs). Nesta dissertação de mestrado, empregaram-se modelos de aprendizagem profunda supervisionados para classificação, regressão, detecção de objetos e segmentação semântica em tarefas de monitoramento de culturas, utilizando-se amostras de imagens obtidas através de três níveis distintos: Satélites, Veículos Aéreos Não Tripulados (UAVs) e Robôs Terrestres Móveis (MLRs). Ambos satélites e UAVs envolvem o uso de imagens multiespectrais. Para o primeiro nível, implementou-se um modelo CNN baseado em Transfer Learning para a classificação de espécies vegetativas. Aprimorou-se o desempenho de aprendizagem do transfer learning através de um método de análise estatística recentemente proposto. Na sequência, para o segundo nível, implementou-se um algoritmo segmentação semântica multitarefa para a detecção de lavouras de cana-de-açúcar e identificação de seus estados (por exemplo, saúde e idade da cultura). O algoritmo também detecta a vegetação ao redor das lavouras, sendo relevante na busca por ervas daninhas. No terceiro nível, implementou-se um algoritmo Single Shot Multibox Detector para detecção de cachos de tomate. De forma a avaliar o estado dos cachos, utilizaram-se duas abordagens diferentes: uma implementação baseada em segmentação de imagens e uma CNN supervisionada adaptada para cálculos de regressão capaz de estimar a maturação dos cachos de tomate. De forma a quantificar cachos de tomate em vídeos para diferentes estágios de maturação, empregou-se uma implementação de Região de Interesse e propôs-se um sistema de rastreamento o qual utiliza informações temporais. Para todos os três níveis, apresentaram-se soluções e resultados os quais superam as linhas de base do estado da arte. / [en] Crop efficiency can be improved by continually monitoring their state and making decisions based on their analysis. The data for analysis can be obtained through images sensors and the monitoring process can be automated by using image recognition algorithms with different levels of complexity. Some of the most successful algorithms are related to supervised Deep Learning approaches which use a form of Convolutional Neural Networks (CNNs). In this master s dissertation, we employ supervised deep learning models for classification, regression, object detection, and semantic segmentation in crop monitoring tasks, using image samples obtained through three different levels: Satellites, Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs). Both satellites and UAVs levels involve the use of multispectral images. For the first level, we implement a CNN model based on transfer learning to classify vegetative species. We also improve the transfer learning performance by a newly proposed statistical analysis method. Next, for the second level, we implement a multi-task semantic segmentation algorithm to detect sugarcane crops and infer their state (e.g. crop health and age). The algorithm also detects the surrounding vegetation, being relevant in the search for weeds. In the third level, we implement a Single Shot Multibox detector algorithm to detect tomato clusters. To evaluate the cluster s state, we use two different approaches: an implementation based on image segmentation and a supervised CNN regressor capable of estimating their maturity. In order to quantify the tomato clusters in videos at different maturation stages, we employ a Region of Interest implementation and also a proposed tracking system which uses temporal information. For all the three levels, we present solutions and results that outperform state-of-the art baselines.
20

[en] DISCRIMINATION OF PORES AND CRACKS IN IRON ORE PELLETS USING DEEP LEARNING NEURAL NETWORKS / [pt] DISCRIMINAÇÃO DE POROS E TRINCAS EM PELOTAS DE MINÉRIO DE FERRO UTILIZANDO REDES NEURAIS

EMANUELLA TARCIANA VICENTE BEZERRA 20 May 2021 (has links)
[pt] O processo de formação de pelotas de minério de ferro consiste na preparação das matérias-primas, formação da pelota crua e endurecimento por meio da queima. O produto final deve ser um material poroso que permita a difusão de gases no forno de redução e que, simultaneamente, resista a compressão, característica relevante durante o transporte e no carregamento do forno. No entanto, durante o tratamento térmico e o transporte podem surgir trincas que comprometem a integridade das pelotas. A discriminação de poros e trincas é, portanto, um importante fator para a análise microestrutural e controle de qualidade do material. A microtomografia de raios-x é uma técnica não destrutiva que gera imagens tridimensionais, o que permite uma visualização completa da pelota. No entanto, a metodologia usual de processamento digital de imagens, baseada em extração de atributos de tamanho e forma, apresenta limitações para discriminar poros de trincas. Redes Neurais Deep Learning são uma alternativa poderosa para classificar tipos de objetos em imagens, utilizando como entrada as intensidades dos pixels e atributos automaticamente determinados pela rede. Após treinar um modelo com os padrões correspondente a cada classe, é possível atribuir cada pixel da imagem a uma das classes presentes, permitindo uma segmentação semântica. Nesta dissertação, otimizou-se uma rede Deep Learning com arquitetura U-Net, usando como conjunto de treinamento poucas camadas 2D da imagem 3D original. Aplicando o modelo à pelota utilizada no treinamento foi possível discriminar poros de trincas de forma adequada. A aplicação do modelo a outras pelotas exigiu a incorporação de camadas destas pelotas ao treinamento e otimização de parâmetros do modelo. Os resultados apresentaram classificação adequada, apesar de apresentar dificuldades de criar um modelo geral para discriminação entre poros e trincas em pelotas de minério de ferro. / [en] The iron ore pellet forming process consists of preparing the raw materials, forming the raw pellet and hardening by firing. The end product must be a porous material which allows gas to diffuse in the blast furnace and at the same time resists compression, which is a relevant feature during transport and loading of the furnace. However, during heat treatment and transport cracks may appear that compromise the integrity of the pellets. The discrimination of pores and cracks is therefore an important factor for microstructural analysis and material quality control. X-ray microtomography is a non-destructive technique that generates three-dimensional images, allowing a full view of the pellet. However, the usual methodology of digital image processing, based on extraction of size and shape attributes, has limitations to discriminate crack from pores. Deep Learning Neural Networks are a powerful alternative to classifying object types in images, using as input the pixel intensities and attributes automatically determined by the network. After training a model with the patterns corresponding to each class, it is possible to assign each pixel of the image to one of the classes present, allowing a semantic segmentation. In this dissertation, a Deep Learning network with U-Net architecture was optimized, using as a training set a few 2D layers of the original 3D image. Applying the model to the pellet used in training it was possible to discriminate cracks pores properly. Application of the model to other pellets required the incorporation of layers of these pellets into the training and optimization of model parameters. The results were adequately classified, despite the difficulty of creating a general model for discrimination between pores and cracks in iron ore pellets.

Page generated in 0.1044 seconds