Spelling suggestions: "subject:"destructure"" "subject:"3dstructure""
41 |
Identification de caractéristiques communes et rares dans les ARN structurés dans la base de données RfamEl Korbi, Amell 08 1900 (has links)
Les ARN non codants (ARNnc) sont des transcrits d'ARN qui ne sont pas traduits en protéines et qui pourtant ont des fonctions clés et variées dans la cellule telles que la régulation des gènes, la transcription et la traduction. Parmi les nombreuses catégories d'ARNnc qui ont été découvertes, on trouve des ARN bien connus tels que les ARN ribosomiques (ARNr), les ARN de transfert (ARNt), les snoARN et les microARN (miARN). Les fonctions des ARNnc sont étroitement liées à leurs structures d’où l’importance de développer des outils de prédiction de structure et des méthodes de recherche de nouveaux ARNnc. Les progrès technologiques ont mis à la disposition des chercheurs des informations abondantes sur les séquences d'ARN. Ces informations sont accessibles dans des bases de données telles que Rfam, qui fournit des alignements et des informations structurelles sur de nombreuses familles d'ARNnc. Dans ce travail, nous avons récupéré toutes les séquences des structures secondaires annotées dans Rfam, telles que les boucles en épingle à cheveux, les boucles internes, les renflements « bulge », etc. dans toutes les familles d'ARNnc. Une base de données locale, RNAstem, a été créée pour faciliter la manipulation et la compilation des données sur les motifs de structure secondaire. Nous avons analysé toutes les boucles terminales et internes ainsi que les « bulges » et nous avons calculé un score d’abondance qui nous a permis d’étudier la fréquence de ces motifs. Tout en minimisant le biais de la surreprésentation de certaines classes d’ARN telles que l’ARN ribosomal, l’analyse des scores a permis de caractériser les motifs rares pour chacune des catégories d’ARN en plus de confirmer des motifs communs comme les boucles de type GNRA ou UNCG. Nous avons identifié des motifs abondants qui n’ont pas été étudiés auparavant tels que la « tetraloop » UUUU. En analysant le contenu de ces motifs en nucléotides, nous avons remarqué que ces régions simples brins contiennent beaucoup plus de nucléotides A et U. Enfin, nous avons exploré la possibilité d’utiliser ces scores pour la conception d’un filtre qui permettrait d’accélérer la recherche de nouveaux ARN non-codants. Nous avons développé un système de scores, RNAscore, qui permet d’évaluer un ARN en se basant sur son contenu en motifs et nous avons testé son applicabilité avec différents types de contrôles. / Noncoding RNAs (ncRNAs) are RNA transcripts that are not translated into proteins yet they play important functional roles in the cell including gene regulation, transcription and translation. Among the many categories of ncRNAs that were discovered, we find the well-known ribosomal RNA (rRNA), transfer RNA (tRNA), snoRNA and microRNAs (miRNA). The functions of ncRNAs are tightly linked to their structural features. Thus, understanding and predicting RNA structure as well as developing methods to search for new ncRNAs help to gain insight into these molecules. Technological advances have made available abundant sequence information accessible in databases such as Rfam, which provides alignments and structural information of many ncRNA families. In this research project, we retrieved the information from the Rfam database about the sequences of all secondary structures such as hairpin loops, internal loops, bulges, etc. in all RNA families. A local database, RNAstem, was created to facilitate the use and manipulation of information about secondary structure motifs. We analyzed hairpin loops, bulges and internal loops using the compiled data about the frequencies of occurrence of each loop or bulge and calculated a frequency score. The frequency score is aimed to be an indicator for the abundance of a specific secondary structure motif. While minimizing the bias caused by the high redundancy of some RNA classes as ribosomal RNAs, the frequency score allowed us to identify the rare motifs in each category as well as the common ones. Our findings about the abundant motifs confirm what is already known from previous studies (ex. abundant GNRA or UNCG tetraloops). We found very large gaps between the most abundant and rare RNA structural features. Moreover, we discovered that "A" and "U" dominate single stranded RNA regions, whether they are bulges or loops. We further explored the possibility of using this data to improve current prediction tools for ncRNAs by applying a filter to new candidates. We developed a score system, RNAscore, that evaluates RNAs depending on their motif contents and we tested the program with many different controls.
|
42 |
5’-Proximal cis-Acting RNA Signals for Coronavirus Genome ReplicationGuan, Bo-Jhih 01 August 2010 (has links)
RNA sequences and higher-order structures in the 5’ and 3’ untranslated regions (UTRs) of positive-strand RNA viruses are known to function as cis-acting elements for translation, replication, and transcription. In coronaviruses, these are best characterized in the group 2a bovine coronavirus (BCoV) and mouse hepatitis virus (MHV), yet their precise mechanistic features are largely undefined. Here, we use a reverse genetics system in MHV to exploit the ~30% nt sequence divergence between BCoV and MHV to establish structure/function relationships of 5’ UTR cis-replication elements. It had been previously shown that a precise replacement of the 391-nt MHV 3’ UTR with the 288-nt BCoV 3’ UTR yields wt-like MHV. Our attempts to replace the 209-nt MHV 5’ UTR with the 210-nt BCoV 5’ UTR, however, yielded a non-viable chimera. Therefore, a systematic analysis of individual 5’-terminal structures was made to identify compatible elements. By placing each of four putative cis-acting domains from the BCoV 5’ UTR into the MHV genome, we learned that (i) stem-loops (SLs) I & II and SLIII are functionally compatible, (ii) SLIV is compatible if it spans parts of the 5’ UTR and the nonstructural protein 1 (nsp1) cistron, thus identifying this part of ORF 1 as a component of the cis-replication signal, (iii) a relatively unstructured 32-nt region mapping between SLIII and SLIV defines a novel virus species-specific cis-replication element, (iv) spontaneous suppressor mutations within MHV SLI and nsp1 cistron compensated for growth defects arising from the BCoV 32-nt element in the MHV genome, (v) cross talk between the 32-nt element, SLI, and the nsp1 cistron appears essential for virus replication, (vi) the BCoV 5’ UTR and nsp1 cistron function together in the MHV genome to generate a wt-like MHV phenotype, and (vii) a functional 5’ UTR-nsp1 domain in group 2a coronaviruses cannot be substituted by the corresponding genomic element from the group 2b SARS-CoV. We postulate that the interaction between the 5’ UTR and nsp1 cistron (or possibly nsp1 protein) functions as a molecular switch between genome translation and ignition of negative-strand RNA synthesis.
|
43 |
Structure de l'ARN au sein des ribonucléoprotéines des Influenzavirus A / Structure of the RNA in Influenza A virus ribonucleoproteinsFerhadian, Damien 28 September 2018 (has links)
Le génome des Influenzavirus A est constitué de huit segments d’ARN de polarité négative formant des ribonucléoprotéines virales (RNPv). La segmentation du génome complique l’empaquetage du génome, puisqu’un jeu complet de segments est nécessaire à l’infectiosité des virus. Il est aujourd’hui admis que le mécanisme d’empaquetage est sélectif et fait intervenir des interactions entre les ARN des différentes RNPv, qui dépendent vraisemblablement de la structure de l’ARN. Notre but a été de caractériser la fixation de la protéine virale NP, composant majeur des RNPv, sur l’ARN in vitro. Nous avons également mis en place une stratégie expérimentale afin de déterminer la structure de l’ARN au sein des particules virales. Ces deux aspects du projet ont été abordés par la cartographie chimique qui permet d’interroger la flexibilité de chaque nucléotide de l’ARN. Nos résultats démontrent une activité chaperone de la protéine NP ainsi que des sites préférentiels de fixation. Notre approche in viro a démontré que l’utilisation de deux sondes chimiques permet de discriminer les interactions ARN-ARN des interactions ARN-NP. / The Influenzavirus genome comprises eight segments of single-stranded RNA of negative polarity packaged in viral ribonucleoproteins (vRNP). Genome segmentation complicates packaging as a full set of vRNPs is required needed for virus infectivity. It is now accepted that packaging is selective and involves interactions between the RNA components of vRNPs that likely depend on the RNA structure. Our goal was to characterize the binding of the viral protein NP, the major component of the vRNP, on in vitro transcribed RNA. We also developed an experimental strategy to determine the RNA structure inside the viral particles. Both parts of the project were addressed with chemical mapping experiments, that interrogates the flexibility of each nucleotide in the RNA structure. Our results show that NP possess an RNA chaperone activity and binds preferential sites. Our in viro approach demonstrate that using two chemical probes allow us to discriminate between RNA-RNA and RNA-NP interactions.
|
44 |
Multi-dimensional probing for RNA secondary structure(s) prediction / Analyse différentielle de données de sondage pour la prédiction des structures d'acides ribonucléiquesSaaidi, Afaf 01 October 2018 (has links)
En bioinformatique structurale, la prédiction de la (des) structure(s) secondaire(s) des acides ribonucléiques (ARNs) constitue une direction de recherche majeure pour comprendre les mécanismes cellulaires. Une approche classique pour la prédiction de la structure postule qu'à l'équilibre thermodynamique, l'ARN adopte plusieurs conformations, caractérisées par leur énergie libre, dans l’ensemble de Boltzmann. Les approches modernes privilégient donc une considération des conformations dominantes. Ces approches voient leur précision limitées par l'imprécision des modèles d'énergie et les restrictions topologiques pesant sur les espaces de conformations.Les données expérimentales peuvent être utilisées pour pallier aux lacunes des méthodes de prédiction. Différents protocoles permettent ainsi la révélation d'informations structurales partielles via une exposition à un réactif chimique/enzymatique, dont l'effet dépend, et est donc révélateur, de la (les) structure(s) adoptée(s). Les données de sondage mono-réactif sont utilisées pour valider et complémenter les modèles d’énergie libre, permettant ainsi d’améliorer la précision des prédictions. En pratique, cependant, les praticiens basent leur modélisation sur des données de sondage produites dans diverses conditions expérimentales, utilisant différents réactifs ou associées à une collection de séquences mutées. Une telle approche intégrative est répandue mais reste manuelle, onéreuse et subjective. Au cours de cette thèse, nous avons développé des méthodes in silico pour une modélisation automatisée de la structure à partir de plusieurs sources de données de sondage.En premier lieu, nous avons établi des pipelines d’analyse automatisés pour l'acquisition de profils de réactivité à partir de données brutes produites à travers une série de protocoles. Nous avons ensuite conçu et implémenté une nouvelle méthode qui permet l'intégration simultanée de plusieurs profils de sondage. Basée sur une combinaison d'échantillonnage de l'ensemble de Boltzmann et de clustering structurel, notre méthode produit des conformations dominantes, stables et compatible avec les données de sondage. En favorisant les structures récurrentes, notre méthode permet d’exploiter la complémentarité entre plusieurs données de sondage. Ses performances dans le cas mono-sondage sont comparables ou meilleures que celles des méthodes prédictives de pointe.Cette méthode a permis de proposer des modèles pour les régions structurées des virus. En collaboration avec des expérimentalistes, nous avons suggéré une structure raffinée de l'IRES du VIH-1 Gag, compatible avec les données de sondage chimiques et enzymatiques, qui nous a permis d’identifier des sites d'interactions putatifs avec le ribosome. Nous avons également modélisé la structure des régions non traduites d'Ebola. Cohérents avec les données de sondage SHAPE et les données de covariation, nos modèles montrent l’existence d'une tige-boucle conservée et stable à l'extrémité 5', une structure typiquement présente dans les génomes viraux pour protéger l'ARN de la dégradation par les nucléases.L’extension de notre méthode pour l’analyse simultanée de variants, appliquée dans un premier temps sur des mutants produits par le protocole Mutate-and-Map et sondés par le DMS, a permis d'enregistrer une amélioration en précision de prédiction. Pour éviter la production systématique de mutants ponctuels et exploiter le protocole récent SHAPEMap, nous avons conçu un protocole expérimental basé sur une mutagenèse non dirigé et le séquençage, où plusieurs ARN mutés sont produits et simultanément sondés. Nous avons traité l’affectation des reads aux mutants de références à l'aide d'une instance de l'algorithme "Expectation-Maximization" dont les résultats préliminaires, sur un échantillon de reads réduit/simulé, ont montré un faible taux d’erreurs d'assignation par rapport à une affectation classique des reads aux séquences d'ARN de référence. / In structural bioinformatics, predicting the secondary structure(s) of ribonucleic acids (RNAs) represents a major direction of research to understand cellular mechanisms. A classic approach for structure postulates that, at the thermodynamic equilibrium, RNA adopts its various conformations according to a Boltzmann distribution based on its free energy. Modern approaches, therefore, favor the consideration of the dominant conformations. Such approaches are limited in accuracy due to the imprecision of the energy model and the structure topology restrictions.Experimental data can be used to circumvent the shortcomings of predictive computational methods. RNA probing encompasses a wide array of experimental protocols dedicated to revealing partial structural information through exposure to a chemical or enzymatic reagent, whose effect depends on, and thus reveals, features of its adopted structure(s). Accordingly, single-reagent probing data is used to supplement free-energy models within computational methods, leading to significant gains in prediction accuracy. In practice, however, structural biologists integrate probing data produced in various experimental conditions, using different reagents or over a collection of mutated sequences, to model RNA structure(s). This integrative approach remains manual, time-consuming and arguably subjective in its modeling principles. In this Ph.D., we contributed in silico methods for an automated modeling of RNA structure(s) from multiple sources of probing data.We have first established automated pipelines for the acquisition of reactivity profiles from primary data produced through a variety of protocols (SHAPE, DMS using Capillary Electrophoresis, SHAPE-Map/Ion Torrent). We have designed and implemented a new, versatile, method that simultaneously integrates multiple probing profiles. Based on a combination of Boltzmann sampling and structural clustering, it produces alternative stable conformations jointly supported by a set of probing experiments. As it favors recurrent structures, our method allows exploiting the complementarity of several probing assays. The quality of predictions produced using our method compared favorably against state-of-the-art computational predictive methods on single-probing assays.Our method was used to identify models for structured regions in RNA viruses. In collaboration with experimental partners, we suggested a refined structure of the HIV-1 Gag IRES, showing a good compatibility with chemical and enzymatic probing data. The predicted structure allowed us to build hypotheses on binding sites that are functionally relevant to the translation. We also proposed conserved structures in Ebola Untranslated regions, showing a high consistency with both SHAPE probing and evolutionary data. Our modeling allows us to detect conserved and stable stem-loop at the 5’end of each UTR, a typical structure found in viral genomes to protect the RNA from being degraded by nucleases.Our method was extended to the analysis of sequence variants. We analyzed a collection of DMS probed mutants, produced by the Mutate-and-Map protocol, leading to better structural models for the GIR1 lariat-capping ribozyme than from the sole wild-type sequence. To avoid systematic production of point-wise mutants, and exploit the recent SHAPEMap protocol, we designed an experimental protocol based on undirected mutagenesis and sequencing, where several mutated RNAs are produced and simultaneously probed. Produced reads must then be re-assigned to mutants to establish their reactivity profiles used later for structure modeling. The assignment problem was modeled as a likelihood maximization joint inference of mutational profiles and assignments, and solved using an instance of the "Expectation-Maximization" algorithm. Preliminary results on a reduced/simulated sample of reads showed a remarkable decrease of the reads assignment errors compared to a classic algorithm.
|
45 |
Le motif d’empaquetage le long du sillon: une nouvelle entité structurale récurrente dans les ARN ribosomiquesGagnon, Matthieu 12 1900 (has links)
La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus.
L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales.
Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent.
Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN.
D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes. / Most RNA molecules have to adopt a complex tertiary structure to accomplish their biological functions. However, the important determinants of a polynucleotide chain that are required for its proper folding and its interactions with other elements are essentially unknown. The establishment of structure-function relationships in large RNA molecules goes inevitably through the analysis of each element of their structure separately and in context with other elements. Like a building, an RNA structure is built of repetitive pieces that are glued together in a specific way. These repetitive elements, instead of being bricks, are recurrent motifs. Recurrent RNA motifs are arrangements of nucleotides found in different parts of a tertiary structure and have identical or very similar conformations. Thus, a necessary step toward the understanding of RNA structure and function consists in the systematic identification of recurrent motifs, followed by their comparative analysis and establishment of their sequence consensus.
The analysis of all instances of helical packing within the ribosome structure led to the identification of a new structural arrangement, named the along-groove packing motif (AGPM), which is found in 14 places of the ribosome structure as well as between the 23S ribosomal RNA and the transfer RNA molecules bound to the P and E sites. The motif is formed by the packing of two double helices via their minor grooves. The sugar-phosphate backbone of one helix goes along the minor groove of the other helix and vice versa. In each helix, the contact region includes four base pairs. The closest packing occurs in the center where one can often see a GU base pair packed against a WC base pair. While the presence of the central base pairs GU versus WC in the core of the motif enhances its stability, other alternatives are also present among available structures of the motif. A comparative analysis of three different combinatorial gene libraries of AGPM, in which the central base pairs were fully randomized, shows that the structural context influences the scope of nucleotide sequence variability of the central base pairs.
The fact that the identity of the central base pairs can vary suggested that there are other determinants responsible of the motif’s integrity. Analysis of all other inter-helix contacts has shown that outside the center of the motif the interactions between backbones are made via three ribose-ribose contacts. Within each of these contacts, the riboses of the nucleotides that are in touch adopt particular positions in order to provide for collision-free interactions between them. We show that the position of these riboses is modulated by the specific base pair conformation in which it belongs.
Finally, another recurrent arrangement that occurs within the structure of three cases of AGPM was identified and called the adenosine-wedge. Analysis has shown that the latter motif is itself composed of a smaller arrangement, called the NAG-triangle motif. We show that the adenosine-wedge motif represents a complex RNA arrangement composed of four repetitive elements, AGPM, the hook-turn, the A-minor and the NAG-triangle, which clearly illustrates the hierarchical organisation of the structure that could also occur in other RNA motifs as well.
Altogether, my results enrich our general understanding of the role of different types of tertiary interactions in the formation of large RNA molecules.
|
46 |
Études structurales et ingénierie du ribozyme VS de NeurosporaDagenais, Pierre 08 1900 (has links)
Les ARN non-codants exercent des rôles essentiels au sein de nombreux processus biologiques, allant de la régulation de l’expression génique à l’activité enzymatique. Afin de remplir leurs fonctions cellulaires, ces ARN doivent adopter des structures tridimensionnelles spécifiques, et mieux comprendre ces structures et leur dynamique est crucial pour élucider leur mécanisme d’action et créer des ARN possédant de nouvelles fonctions. Afin de mieux comprendre la structure, la dynamique et l’ingénierie des ARN, notre laboratoire étudie le ribozyme VS de Neurospora, un petit ARN (~160 nucléotides) possédant une activité catalytique.
Le ribozyme VS a été découvert il y a une trentaine d’années chez certains isolats naturels du champignon microscopique Neurospora. Ce ribozyme a fait l’objet d’études approfondies et est considéré comme étant un système modèle idéal pour étudier la structure et la fonction de l’ARN in vitro, en raison de sa taille relativement petite, de sa structure tridimensionnelle complexe et de son activité enzymatique facilement détectable. Comme plusieurs autres ribozymes de sa famille, le ribozyme VS catalyse des réactions de clivage et de ligation d’une liaison phosphodiester spécifique. Toutefois, il a la capacité unique de reconnaître et de cliver un substrat isolé, replié sous forme de tige-boucle, par l’entremise d’une interaction boucle-boucle extrêmement stable, une caractéristique intéressante d’un point de vue de l’ingénierie de l’ARN. Des structures cristallines récentes ont fourni de l’information importante à propos de l’état fermé du ribozyme, qui comprend un site actif pré-catalytique. Toutefois, des études récentes ont plutôt démontré que le ribozyme VS adopte un état ouvert en solution et il n’existe que très peu d’information structurale sur cet état et sur les mécanismes de transition menant à la forme fermée. Afin de caractériser la structure du ribozyme en solution, une stratégie modulaire de divide-and-conquer a été entreprise et des structures RMN à haute résolution de chacun des sous-domaines structuraux clés ont été déterminées.
Cette thèse vise à caractériser la structure du ribozyme VS complet en solution et à explorer sa capacité à cliver une molécule d’intérêt différente de son substrat naturel. Dans un premier temps, une étude d’ingénierie a été entreprise afin de créer des variants du ribozyme VS capables de reconnaître une tige-boucle d’ARN dérivée de l’Élément de Réponse de Transactivation du virus d’immunodéficience humaine (VIH). Ainsi, des variants hautement actifs du ribozyme ont été identifiés par sélection in vitro et une étude complémentaire de dynamique moléculaire a démontré que l’interaction boucle-boucle agit à titre de charnière dynamique et facilite la formation de l’état fermé du ribozyme. L’approche structurale de divide-and-conquer a ensuite été complétée en combinant des études de RMN et de diffusion des rayons-X aux petits angles (SAXS). Ainsi, des structures à haute résolution du domaine catalytique minimal et d’un complexe formé entre un ribozyme VS plus étendu et un substrat non-clivable ont alors été obtenus. En comparant ces structures aux structures cristallines, nous avons découvert un réarrangement structural important associé à la formation du site actif. Dans l’ensemble, ces travaux offrent une meilleure compréhension de l’architecture globale du ribozyme VS et de son mécanisme d’action qui comprend un échange dynamique de multiples états conformationnels. Plus généralement, les leçons apprises ici permettront de mieux guider les expériences d’ingénierie du ribozyme VS et d’autres ARN fonctionnels. / Non-coding RNAs play essential roles in many biological processes, ranging from the regulation of gene expression to enzymatic activity. To perform their cellular functions, RNAs must adopt specific three-dimensional structures, and understanding how these structures fold is crucial to elucidate their mechanism of action. However, our fundamental understanding of the structure and dynamics of RNA at atomic resolution remains rather limited. To better understand the structure, dynamics and engineering of RNA, our laboratory is investigating the Neurospora VS ribozyme, a small RNA (~160 nucleotides) with catalytic activity.
The VS ribozyme was originally found 30 years ago in natural isolates of Neurospora fungi. It has been thoroughly investigated as an ideal model system to study the structure and function of RNA in vitro, due to its small size, its complex three-dimensional structure and easily detectable activity. Like other small nucleolytic ribozymes, the VS ribozyme catalyzes the cleavage and ligation reactions of a specific phosphodiester bond. However, it has the unique ability to recognize and cleave an isolated hairpin substrate through the formation of a highly stable kissing-loop interaction, which is of great interest for RNA engineering purposes. Recent crystal structures have provided useful information on the closed state of the ribozyme, in which the active site is formed. However, the VS ribozyme is also known to adopt an open state in solution and there is still very little structural information regarding this state and how it is converted into the active closed state. In order to characterize the solution structure of the ribozyme and its dynamics, an NMR-based divide-and-conquer approach was previously undertaken in which high-resolution structures of each of the key structural subdomains were determined.
The work presented in this thesis aims to characterize the structure of the complete VS ribozyme in solution and to explore its ability to cleave an RNA hairpin of interest, different from its natural substrate. First, an engineering study was undertaken to create VS ribozyme variants capable of recognizing an RNA stem-loop derived from the HIV-1 Trans-Activation Response Element RNA. Using in vitro selection, highly active ribozyme variants were identified, and their sequence analysis suggests that the improved activity observed in some variants depends on increased conformational sampling of the kissing-loop interaction. Complementary molecular dynamics studies indicate that the kissing-loop interaction acts as a dynamic hinge to facilitate the formation of the closed state
of the ribozyme. Next, the divide-and-conquer approach for structural investigation of the VS ribozyme was completed by combining NMR and small-angle X-ray scattering (SAXS) data. High-resolution structures were determined for both a minimal catalytic domain and a complex between a more extended trans ribozyme and a non-cleavable substrate. By comparing these solution structures to the previously reported crystal structures, we uncovered an important structural rearrangement associated with the formation of the active site. Overall, this work provides a better understanding of the global architecture of the VS ribozyme and how it fulfills its function by dynamic exchange of many conformational states. More generally, the structural and dynamic knowledge generated from this work will help to guide future engineering studies of the VS ribozyme and other functional RNAs.
|
47 |
Le motif d’empaquetage le long du sillon: une nouvelle entité structurale récurrente dans les ARN ribosomiquesGagnon, Matthieu 12 1900 (has links)
La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus.
L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales.
Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent.
Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN.
D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes. / Most RNA molecules have to adopt a complex tertiary structure to accomplish their biological functions. However, the important determinants of a polynucleotide chain that are required for its proper folding and its interactions with other elements are essentially unknown. The establishment of structure-function relationships in large RNA molecules goes inevitably through the analysis of each element of their structure separately and in context with other elements. Like a building, an RNA structure is built of repetitive pieces that are glued together in a specific way. These repetitive elements, instead of being bricks, are recurrent motifs. Recurrent RNA motifs are arrangements of nucleotides found in different parts of a tertiary structure and have identical or very similar conformations. Thus, a necessary step toward the understanding of RNA structure and function consists in the systematic identification of recurrent motifs, followed by their comparative analysis and establishment of their sequence consensus.
The analysis of all instances of helical packing within the ribosome structure led to the identification of a new structural arrangement, named the along-groove packing motif (AGPM), which is found in 14 places of the ribosome structure as well as between the 23S ribosomal RNA and the transfer RNA molecules bound to the P and E sites. The motif is formed by the packing of two double helices via their minor grooves. The sugar-phosphate backbone of one helix goes along the minor groove of the other helix and vice versa. In each helix, the contact region includes four base pairs. The closest packing occurs in the center where one can often see a GU base pair packed against a WC base pair. While the presence of the central base pairs GU versus WC in the core of the motif enhances its stability, other alternatives are also present among available structures of the motif. A comparative analysis of three different combinatorial gene libraries of AGPM, in which the central base pairs were fully randomized, shows that the structural context influences the scope of nucleotide sequence variability of the central base pairs.
The fact that the identity of the central base pairs can vary suggested that there are other determinants responsible of the motif’s integrity. Analysis of all other inter-helix contacts has shown that outside the center of the motif the interactions between backbones are made via three ribose-ribose contacts. Within each of these contacts, the riboses of the nucleotides that are in touch adopt particular positions in order to provide for collision-free interactions between them. We show that the position of these riboses is modulated by the specific base pair conformation in which it belongs.
Finally, another recurrent arrangement that occurs within the structure of three cases of AGPM was identified and called the adenosine-wedge. Analysis has shown that the latter motif is itself composed of a smaller arrangement, called the NAG-triangle motif. We show that the adenosine-wedge motif represents a complex RNA arrangement composed of four repetitive elements, AGPM, the hook-turn, the A-minor and the NAG-triangle, which clearly illustrates the hierarchical organisation of the structure that could also occur in other RNA motifs as well.
Altogether, my results enrich our general understanding of the role of different types of tertiary interactions in the formation of large RNA molecules.
|
48 |
RNA recurrent motifs : identification and characterizationButorin, Yury 04 1900 (has links)
La détermination de la structure tertiaire du ribosome fut une étape importante dans la compréhension du mécanisme de la synthèse des protéines. Par contre, l’élucidation de la structure du ribosome comme tel ne permet pas une compréhension de sa fonction. Pour mieux comprendre la nature des relations entre la structure et la fonction du ribosome, sa structure doit être étudiée de manière systématique. Au cours des dernières années, nous avons entrepris une démarche systématique afin d’identifier et de caractériser de nouveaux motifs structuraux qui existent dans la structure du ribosome et d’autres molécules contenant de l’ARN.
L’analyse de plusieurs exemples d’empaquetage de deux hélices d’ARN dans la structure du ribosome nous a permis d’identifier un nouveau motif structural, nommé « G-ribo ». Dans ce motif, l’interaction d’une guanosine dans une hélice avec le ribose d’un nucléotide d’une autre hélice donne naissance à un réseau d’interactions complexes entre les nucléotides voisins. Le motif G-ribo est retrouvé à 8 endroits dans la structure du ribosome. La structure du G-ribo possède certaines particularités qui lui permettent de favoriser la formation d’un certain type de pseudo-nœuds dans le ribosome.
L’analyse systématique de la structure du ribosome et de la ARNase P a permis d’identifier un autre motif structural, nommé « DTJ » ou « Double-Twist Joint motif ». Ce motif est formé de trois courtes hélices qui s’empilent l’une sur l’autre. Dans la zone de contact entre chaque paire d’hélices, deux paires de bases consécutives sont surenroulées par rapport à deux paires de bases consécutives retrouvées dans l’ARN de forme A. Un nucléotide d’une paire de bases est toujours connecté directement à un nucléotide de la paire de bases surenroulée, tandis que les nucléotides opposés sont connectés par un ou plusieurs nucléotides non appariés. L’introduction d’un surenroulement entre deux paires de bases consécutives brise l’empilement entre les nucléotides et déstabilise l’hélice d’ARN. Dans le motif DTJ, les nucléotides non appariés qui lient les deux paires de bases surenroulées interagissent avec une des trois hélices qui forment le motif, offrant ainsi une stratégie élégante de stabilisation de l’arrangement.
Pour déterminer les contraintes de séquences imposées sur la structure tertiaire d’un motif récurrent dans le ribosome, nous avons développé une nouvelle approche expérimentale. Nous avons introduit des librairies combinatoires de certains nucléotides retrouvés dans des motifs particuliers du ribosome. Suite à l’analyse des séquences alternatives sélectionnées in vivo pour différents représentants d’un motif, nous avons été en mesure d’identifier les contraintes responsables de l’intégrité d’un motif et celles responsables d’interactions avec les éléments qui forment le contexte structural du motif.
Les résultats présentés dans cette thèse élargissent considérablement notre compréhension des principes de formation de la structure d’ARN et apportent une nouvelle façon d’identifier et de caractériser de nouveaux motifs structuraux d’ARN. / Although determination of the ribosome tertiary structure has been an outstanding step towards elucidation of the mechanism of protein synthesis, the complexity of this structure does not provide an easy answer of how this large molecular complex works. In order to understand the nature of structure-function relationships in the ribosome, the ribosome structure itself should be subjected to thorough analysis. In the last years, we undertook systematic efforts toward identification and characterization of all recurrent structural motifs existing in the ribosomal RNA and in other RNA-containing molecules.
The analysis of many instances of helix-helix packing in the ribosome structure allowed us to identify a new structural motif which we called “G-ribo”. In this motif, an interaction of the sugar edge of a guanosine in one helix with the ribose of a nucleotide from another helix was found to be at the origin of a complex network of concomitant inter-nucleotide interactions. In total, the G-ribo motif was found at eight locations within the ribosomal RNA. A surprising feature of this motif consists in its ability to favor the formation of pseudoknots of a particular type. In the ribosome structure, there are four pseudoknots whose formation is mediated by the G-ribo motif.
Systematic analysis of the ribosome as well as the RNAseP crystal structures allowed for the identification of a new RNA motif, which we called “DTJ”, or Double-Twist Joint motif. This motif is made of three short RNA double helices, which stack one on top of another. In the contact zone of each pair of helices two consecutive base pairs are over-twisted compared to the regular helical twist of 32° of A-RNA. One nucleotide of the base pair is always directly connected to the one nucleotide of the over-twisted base pair, while the opposite nucleotides of these base pairs are connected with one or several unpaired nucleotides. Introduction of the helical over-twist between two consecutive base pairs breaks the inter-nucleotide stacking and destabilizes the RNA double helix. In the DTJ, the unpaired nucleotides that connect the two over-twisted base pairs interact with one of the three motif-forming helices, providing an elegant strategy for the stabilization of the whole arrangement.
To determine the nucleotide sequence constraints imposed on the structure of recurrent RNA motifs in the functional ribosome we developed a new approach consisting in the selection of functional ribosomes from a combinatorial gene library in which certain nucleotides of the rRNA gene corresponding to a particular motif were randomized. Comparison of the constraints determined for different examples of the same motif allowed us to distinguish between constraints responsible for the integrity of the motif and for its interaction with surrounding elements, including ribosomal proteins.
The work significantly improves our understanding of the principles of RNA structure formation and opens a new way to identify and characterize RNA motifs.
|
49 |
Contributions to the study of the architecture and evolution of ribozymesMeyer, Mélanie 13 September 2013 (has links) (PDF)
NcRNA represent most of primary transcripts RNA in higher eukaryotes and tune gene expression via diverse mechanisms. They adopt 3D structures composed at 70% by WC bp forming A-form helices linked by RNA motifs. We identified the pk-turn, a new RNA motif related to k-turns that allow for the formation of a bend of 60° between stems P16 and P17 from the bacterial RNaseP. Yet it features different sequence and structural requirements than k-turns. The 2nd ribozyme which got my attention is the LCrz inserted in GIR2, a group I intron. This twintron is observed in the pre-rRNA 18S of the small subunit of the eukaryoteD. iris. LCrz catalyzes a reaction equivalent to the first step of splicing by group II introns, but in a structural context related to group I introns. We solved the 2.5 Å crystal structure of the LCrz and confirmed the unexpected shape by means of SAXS experiments. This work emphasizes the relationship between structure and function in the evolution of ribozymes.
|
50 |
In Silico Perspectives on RNA Structures Modulating Viral Gene Expression and Mechanics of tRNA TransportGupta, Asmita January 2015 (has links) (PDF)
The repertoire of cellular functions mediated by Ribonucleic acid (RNA) molecules have expanded considerably during the last two decades. The role played by RNA in controlling and regulating gene expression in viruses, prokaryotes and eukaryotes has been a matter of continuous investigations. This interest has arisen primarily due to the discoveries of cisacting RNA structures like riboswitches, ribosensors and frameshift elements, which are found in either the 5’-, 3’-untranslated regions of mRNA or in the open reading frames. These structures control gene expression at the level of translation by either sequestering the Shine-Dalgarno (SD) sequence to regulate translation initiation or modulating ribosomal positions during an active translation process. Very often, these structures comprise of an RNA pseudoknot and it has been observed that these pseudoknots exist in a dynamic equilibrium with other intermediate structures. This equilibrium could be shifted by several factors including presence of ions, metabolites, temperature and external force. RNA pseudoknots represent the most versatile and ubiquitous class of RNA structures in the cell, whose unique folding topology could be exploited in a number of ways by the cellular machinery.
In this thesis, a thorough study of programmed -1 ribosomal frameshifting (-1 PRF) process, which is a well known gene regulation event employed by many RNA viruses, was carried out. -1 PRF is a translation recoding process, necessary for viruses to main-tain a stoichiometric ratio of structural: enzymatic proteins. This ratio varies among different viral species. At the heart of this process, lies an RNA pseudoknot accompanied by a seven nucleotide long sequence motif, which pauses an actively translating ribosome on mRNA and causes it to shift its reading frame. The frameshift inducing efficiency of pseudoknot depends on multiple factors, for example the time scale of ribosomal pause and RNA unfolding, subsequent refolding of structure to native/intermediate states and/or environment conditions. With the aim of illustrating the fundamentals of the process, multiple factors involved in -1 PRF were studied. Chapters 2-4 represent distinct aspects of -1 PRF process, while Chapter 5 discusses a different work concerned with nucleocytoplasmic transport of tRNA carried out by nuclear export receptor Exporting.
Chapter 1 gives an overview of the different regulatory activities with which RNA structures and sequences are found to be associated and the evolution of these stud-ies. It discusses the different types of structural motifs found to constitute tertiary RNA structure and secondary structure prediction and determination techniques. A brief description of ab initio RNA structure modeling and other relevant tools and methodologies used in this work has been presented. Details of techniques used in each study have been provided in relevant chapters.
Chapter 2 describes how local factors like ionic conditions, hydration patterns, presence of protonated residues and single residue mutations affect the structural dynamics of an RNA pseudoknot involved in -1 PRF from a plant luteovirus. Single residue mutations in the loop regions or certain base-pair inversions in the stem regions of pseudoknot increase the frameshift inducing ability of the pseudoknot structure, while some others decrease this efficiency. However, it was not clear how the changes made to the wild-type (WT) RNA pseudoknot from Beet Western Yellow Mosaic virus were affecting the global structure in terms of its dynamics and other parameters. To study this, multiple all-atom molecular dynamics simulations (MD) were performed on WT and mutant structures created in silico. The effect of presence and absence of magnesium ions on the structural geometry was also studied. The analysis was done to identify the increase/decrease in the number of hydrogen bonds formed by Watson-Crick base-pairs in stem region or non Watson-Crick pairs between stem and loop. Ionic and water densities were analyzed and the role of potential ribosome-pseudoknot interaction was elaborated.
With the aim of mimicking ribosome induced unfolding of an RNA pseudoknot, steered molecular dynamics pulling experiments were performed. This work was done primarily to understand the unfolding pathway of Hairpin(H)-type pseudoknots in general and the intermediate structures formed. Chapter 3 describes the thermodynamics and mechanics associated with the mechanical pulling of -1 PRF inducing RNA pseudoknot and its mutants described in previous chapter. Analysis of the trajectories reveal relative unfolding patterns in terms of disruption of various hydrogen bonds. This study allowed us to pinpoint the kind of intermediate structures being formed during pulling and whether these intermediate structures correspond to any known secondary structures, such as simple stem-loops. This information could be used for gaining insights into the folding pathways of these structures.
An RNA pseudoknot stimulates -1 PRF in conjunction with a heptanucleotide “slippery site” and an intervening spacer sequence. A comprehensive study of analyzing the sequence signatures and composition of all overlapping gene segments harboring these frameshift elements from four different RNA virus families was carried out. Chapter 4 describes the sequence composition of all overlapping gene segments in Astroviridae, Coronaviridae, Retroviridae and Luteoviridae viral families which are known to employ -1 PRF process for maintaining their protein products. Sequence analysis revealed preference for GC bases in the structure forming sequence regions. A comparative study between multiple sequence alignment and secondary structure prediction revealed that while pseudoknots have a clear preference for specific base-pairs in their stem regions, viral families that employ a hairpin loop as -1 PRF structure, doesn’t show this preference. Information derived from secondary structure prediction was then used for RNA ab initio modeling to generate tertiary structures. Furthermore, the structural parameters were calculated for the helices of the frameshift inducing pseudoknots and were compared with the values calculated for a set of non -1 PRF inducing H-type pseudo-knots. This study highlighted the differences between -1 PRF pseudoknots and other H-type pseudoknot structures as well as specific sequence and structural preferences of the former.
Chapter 5 discusses the dynamics of a tRNA transport factor Exportint (Xpot), which transports mature tRNA molecules from nucleus to cytoplasm and belongs to Importitβ family of proteins. The global conformational dynamics of other transport receptors has been reported earlier, using coarse-grained modeling and Elastic Network Models (ENMs), but a detailed description of the dynamics at an all-atomic resolution was lacking. This transport requires association of Xpot with RanGTP, a G-protein, in the nucleus and hydrolysis of RanGTP in the cytoplasm. The chain of events leading to tRNA release from Xpot after RanGTP hydrolysis was not studied previously. With these objectives, several molecular complexes containing Xpot bound to Ran or tRNA or both in the GTP and GDP ligand states as well as free Xpot structures in nuclear and cytosolic forms were studied. A combination of conventional and accelerated molecular dynamics simulations was used to study these molecular complexes. The study highlighted various aspects associated with tRNA release and conformational change which occurs in Xpot in cytosolic form. The nuclear to cytosolic state transition in Xpot could be attributed to large fluctuations in C-terminal region and dynamic hinge-points located between specific HEAT repeats. A secondary role of Xpot in controlling the quality of tRNA transport has been proposed based on multiple sequence and structure alignment with Importin-β protein. The loss of critical contacts like hydrogen bonds and salt bridges between Xpot/Ran and Xpot/tRNA interface was evaluated in order to study the initial effects of RanGTP hydrolysis and how it influences receptor-cargo binding. This study revealed various aspects of tRNA transport process by Xpot, not understood previously.
The results presented in this thesis illustrate the role of RNA sequence elements and pseudoknots present in RNA viruses in modulating -1 PRF process and how multiple environmental factors affect -1 PRF inducing ability of the structure. From the studies of Xpot and its complexes, the effects of GTP hydrolysis leading to tRNA dissociation have been presented and the progression of conformational transition in Xpot after tRNA dissociation has been highlighted. Chapter 6 summarizes major conclusions of this thesis work.
The refolding of single stranded RNA chains, subjected to a previous unfolding simulation is studied. Appendix A describes this work and initial results. Appendix B describes the effect of improved molecular dynamics force fields, containing corrections for χ torsion angle for RNA, on the conformation of tertiary RNA structures.
Part of the work presented in this thesis has been reported in the following publications.
1.Asmita Gupta and Manju Bansal. Local Structural and Environmental Factors De-fine the Efficiency of an RNA Pseudoknot Involved in Programmed Ribosomal Frameshift Process. J. Phys. Chem. B. 118 (41), pp 11905-11920. 2014
2.Asmita Gupta, Senthilkumar Kailasam and Manju Bansal. Insights Into Nucleo-cytoplasmic Transport of tRNA by Exportin-t. Manuscript under review.
List of manuscripts that are being prepared from the work reported in Chapter 3 in this thesis.
1 Asmita Gupta and Manju Bansal. The role of sequence effects on altering the un-folding pathway of an RNA pseudoknot: a steered molecular dynamics study. Manuscript in preparation.
2 Asmita Gupta and Manju Bansal. Molecular basis for nucleocytoplasmic transport of tRNA by Exportin-t. Journal of Biomolecular Structure and Dynamics, May;33 Suppl 1:59-60, 2015
|
Page generated in 0.2875 seconds