• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 9
  • 9
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 97
  • 97
  • 97
  • 19
  • 17
  • 17
  • 16
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Cold-inducible RNA-binding protein (Cirp) interacts with Dyrk1b/Mirk and promotes proliferation of immature male germ cells in mice / 低温誘導性RNA結合タンパク質CirpはDyrk1b/Mirkと相互作用し、マウスで未熟な雄性生殖細胞の増殖を促進する

Yasuda, Momoko 23 May 2013 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第12761号 / 論医博第2061号 / 新制||医||999(附属図書館) / 30613 / 京都大学大学院医学研究科分子医学系専攻 / (主査)教授 篠原 隆司, 教授 萩原 正敏, 教授 中辻 憲夫 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
52

Structural basis for translational regulation by RNA-binding protein Musashi-1 / RNA結合タンパク質Musashi-1による翻訳制御の構造基盤

Iwaoka, Ryo 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第20729号 / エネ博第357号 / 新制||エネ||70(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 片平 正人, 教授 森井 孝, 教授 木下 正弘 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
53

Pleiotropic effect of MATR3 in pluripotent stem cells

Pollini, Daniele 15 October 2020 (has links)
Matrin3 (MATR3) is an RNA binding protein involved in many roles in the nucleus, such as chromatin architecture and gene expression regulation, modulating transcriptional and post-transcriptional processes as RNA splicing and mRNA stabilization. Nevertheless, some functions of MATR3 within the cells are not entirely clear. MATR3 has been associated with Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that damages motor neuron (MN) cells and leads to progressive muscle paralysis and respiratory failure. A better understanding of MATR3 activity within cell physiology could represent an essential breakthrough for studying MATR3-associated pathologies. Using MATR3-silenced human pluripotent stem cell (hiPSC) line model, we collected data on the MATR3 role in the pluripotency and in the neural induction and differentiation. We found that the downregulation of MATR3 alters the expression level of crucial self-renewal factors such as OCT4, NANOG, KLF4, and LIN28A. We observed MATR3 acts at multiple levels of the gene expression, i.e. regulating YTHDF1 expression, and in RNA metabolism, having a role in mRNA stabilization and translation. The reduction of stemness potential caused by MATR3 downregulation creates a defect during the neurodifferentiation process, which does not arrest motor neurons formation but induces selective alterations that may affect motor neurons functionality. Indeed, several morphological and molecular abnormalities were observed during the neuronal differentiation, such as the alterations of the formation of neuroepithelial rosettes that arise in a reduction of neurite lengths and arborization in neuronal cells. On this basis, we investigated neuronal differentiation in the brain organoids grown from iPSCs derived from ALS patients fibroblasts. We show, for the first time, that MATR3 is a critical factor in orchestrating the stemness network through transcriptional, post-transcriptional, and translational regulation, therefore affecting the differentiation of mature neurons.
54

Identification and characterization of small molecules inhibiting the RNA binding protein HuR

Bonomo, Isabelle 24 October 2019 (has links)
Post-transcriptional control of gene expression in Eukaryotes plays a pivotal role in determining intricated networks defining physiological and pathological conditions among each organism. RNA Binding Proteins (RBPs), by exploiting RNA-protein and protein-protein interactions, have been recognized as the main actors in modulating these processes. As a consequence, RBPs aberrant expression, modulation or mis-localization, leads to the insurgence of complex phenotypes and diseases. Therefore, targeting and modulating the activity of RBPs found associated to different pathologies represents a new promising therapeutic strategy. During my PhD I aimed at identify, characterize and refine inhibitors targeting the RNA binding protein HuR. HuR belongs to the ELAVL protein family, it is ubiquitously expressed in the cells and among tissues and highly conserved throughout mammalian evolution. By binding AU/U rich elements (ARE) in the 3’UTRs of mRNAs, HuR mainly stabilizes its target transcripts, enhancing their translation. ARE sequences are found in 7% of the human mRNAs, coding for protein involved in key cellular processes as: immune response and inflammation, cell division and proliferation, angiogenesis, senescence and apoptosis. Hence, dysregulation in HuR expression and in its subcellular localization have been associated with the insurgence of several pathologies, mostly cancers and inflammation diseases. Notably, malignant transformations and poor prognosis in patients have been found characterized by highly nuclear or cytosolic HuR expression in a significant number of human cancers. Indeed, the majority of HuR regulated transcripts encode for protein responsible for the appearance of several cancerogenic traits. In particular, critical crosstalk established between cancer cells and inflammation processes play a pivotal role in worsening and compromising cancers development and onset. Moreover, considering that 90% of mRNAs coding for cytokines and chemokines contains repeated AREs sites in the 3’UTR, HuR plays a strong regulatory role in immune system (innate and adaptive) development and homeostasis as well as in pathogenic mechanisms. The searching for HuR inhibitors represents a challenging area, in the drug discovery field, due to its pleiotropic functions and its intrinsic structural complexity, which presents unfolded regions and sequences prone to aggregation. HuR disruptors have been reported in the literature, but without systematic studies, thus the identification of a new class of small molecules is still at the beginning. Among the molecules discovered so far, in 2015 our group identified through a High-throughput Screening a natural compound, DHTS, as a bona fide HuR inhibitor. Following that finding, we, me included, ascribed to the molecule a well-defined mechanism of action, identifying the specific binding sites on which HuR:DHTS interaction is based, defining that upon the mRNA binding DHTS interplays with HuR maintaining the protein in a closed conformation, thus inhibiting its function. Furthermore, we demonstrated DHTS anti-cancer activity in vitro, in cellular context and in vivo, in an HuR-dependent manner. In this way, DHTS represented the molecular scaffold, for the generation of a new class of highly potent HuR inhibitors, called Tanshinone Mimics (TMs). A functional oriented approach was applied for the synthesis of new molecules harboring only DHTS chemical elements responsible for HuR targeting, leading to a completely new molecular scaffold, not previously described in the literature, with respect to the ancestor molecule. I have characterized and identified more potent molecules, describing their anticancer properties, through the evaluation of their capabilities of downregulating the total expression level of well-known HuR targets, coding for proteins involved in tumor insurgence and progression, as VEGF, ERBB2 and CTNNB1, and reducing cancer cell migration, cell cycle progression in a minor extent. On the other end, I have explored TMs anti-inflammatory properties, counteracting the inflammatory response mediated by macrophages, directly impairing the binding between HuR and its pro-inflammatory targets, diminishing their expression and related protein secretion. Moreover, I have put evidences on TMs activity in vivo in acute inflammation mouse models. Lastly, I have evaluated TMs activity in affecting T-cells proliferation, on which HuR it is known to play a regulatory role. In conclusion, we identified TMs with Structure-Activity Relationships (SARs) towards HuR inhibition and its biological implications, aimed at ameliorating their specificity and bioavailability suitable for in vivo therapeutic strategies.
55

THE CELLULAR NUCLEIC ACID BINDING PROTEIN IN AGING AND DISEASE

Webb, Robin 01 January 2013 (has links)
The ZNF9 gene on chromosome 3 encodes the cellular nucleic acid binding protein (CNBP), a ubiquitously expressed, 177 amino acid (≈19.5kDa) protein that is highly conserved among vertebrates. The function of the protein is largely unknown, however an expansion in the first intron of the protein results in myotonic dystrophy type 2 (DM2), a multisystemic disease featuring cardiac arrhythmia, muscle wasting, cataracts, and a range of neuropathologies. Remarkably, we recently discovered that CNBP is involved in regulating the activity of β-secretase, the enzyme that produces the first cleavage event in the generation of the amyloid-β peptide (Aβ). The progressive fibrillization and deposition of Aβ is widely believed to be the primary causal factor in the development of Alzheimer’s disease (AD), and AD-like pathology in individuals with Down syndrome (DS). DS provides a unique model for evaluating how these factors change in the aged brain as compared to young brain, and how such changes affect the proportion of DS patients with AD. In the AD brain, both BACE1 and BACE2 increased from an early stage of disease; in DS brains, BACE1 significantly decreased (p<0.04) with age, whereas BACE2 was unchanged, even though the gene for BACE2 is located within the DS obligate region of chromosome 21. BACE1 and BACE2 activity levels were highly correlated in this series (r2 = 0.95), indicating that there may be a higher degree of shared regulation than previously believed. This implicates regulators of BACE as potentially critical for the development of AD, and our data suggests that CNBP may be one such regulator. In AD, CNBP increases early in the disease process, a change that does not occur in the normal aging process or in DS. CNBP and BACE protein levels were correlated in these cases (p<0.001), while there was no relationship between CNBP and age, or CNBP and Aβ, in either the human or mouse brain, indicating that CNBP does not increase as a consequence of normal aging. Thirty day overexpression of CNBP following adeno-associated viral delivery in murine gastrocnemius muscle resulted in an increase in BACE1 protein (p<0.01) and a consequential increase in Aβ production (p<0.01). Other experiments indicated that CNBP overexpression did not affect the half-life of BACE1 mRNA or protein, but resulted in an increase in BACE1 translation. These data indicate that CNBP is an important regulator of β-secretase, and may play an important role in the onset and progression of AD.
56

Zur Transkriptions- und Translationskontrolle des Gens für Transitionsprotein

Topaloglu, Özlem 03 May 2000 (has links)
No description available.
57

Purification and identification of specific RNA-binding protein that binds to the 3'UTR region of cytochrome P450aromatase mRNA in bovine granulosa cells

Xue, Siqi January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
58

Study of Musashi1-Expressing cells and of Musashi1 function in mouse intestinal physiopathology / Etude des cellules exprimantes Musashi1 et de la fonction de Musashi1 dans la physiopathologie intestinale de la souris

Cambuli, Francesca Maria 20 December 2012 (has links)
L’épithélium intestinal est une monocouche de cellules qui tapisse la lumière intestinale, constitué d’un compartiment différencié, les villosités dans l’intestin grêle et les plateaux épithéliaux dans le colon, et d’un compartiment prolifératif, les cryptes de Lieberkühn. Ce tissue se renouvelle de façon rapide et continue tout au long de la vie de l’individu, grâce à la présence de cellules souches adultes dans le fond des cryptes. Ces cellules s’autorenouvellent et donnent naissance à des progéniteurs prolifératifs (capables d’engendrer les différents cytotypes épithéliaux) qui se différencient tout en migrant vers le compartiment différencié. Mon travail de these a porté sur l’étude d’une marqueur putatif de ces cellules souches épithéliales intestinales: Musashi1 (Msi1).Dans ce contexte, mon premier axe d’étude s’est focalisé sur l’isolement et la caractérisation des cellules souches épithéliales intestinales chez la souris. Pour cela, nous avons généré des souris transgéniques exprimant la protéine fluorescente GFP sous le contrôle du promoteur de Msi1. Les cellules souches intestinales de ces souris coexpriment donc Msi1 et la GFP. Ce modèle a été validé et nous à permis de isoler les cellules GFP/Msi1 positives dans l’intestin. A l'aide de différentes approches cellulaires et moléculaires, nous avons confirmé leur nature de cellules souches et nous avons apporté des nouvelles données sur la composition de la zone proliférative de l’épithélium intestinal murin.Le second axe de mes travaux de thèse a porté sur l’étude de la fonction de Msi1 dans l'homéostasie de l’épithélium intestinal chez la souris, par son sur-expression tous au long de l’épithélium. Nous avons montré que la sur-expression de cette protéine, qui est un régulateur des voies Wnt et Notch, perturbe l’architecture intestinale, a propriétés pro-prolifératives et un potentiel tumorigènique. / The intestinal epithelium is a monolayer of cells surrounding the intestinal lumen. It consists of a differentiated compartment, the villi in the small intestine and a flat surface in the colon, and a proliferative compartment, the crypts of Lieberkühn. This tissue self-renews rapidly and continuously throughout life, due to the presence of adult stem cells in the bottom of the crypts. These cells are capable of self-renewing and give rise to proliferating progenitors (capable of generating all the different epithelial cytotypes) that differentiate and migrate toward the differentiated compartment. My thesis focused on the study of the intestinal epithelial stem cells marker Musashi1 (Msi1).In this context, the first part of my thesis work focused on the isolation and characterization of the intestinal epithelial stem cells that express Msi1 in the mouse. For this, we generated transgenic mice expressing the fluorescent protein GFP under the control of the promoter of Msi1. The intestinal stem cells of these mice co-express Msi1 and GFP. This model has been validated and allowed us to isolate GFP+/Msi-expressing cells in the intestine. By using different cellular and molecular approches, we confirmed their nature of stem cells and provided new data on the composition of the proliferative zone in the murine intestinal epithelium.The second part of my thesis has focused on the study of the function of Msi1 in the intestinal epithelium homeostasis in the mouse, by its over- and ectopic expression all along the epithelium. We have shown that the over-expression of this protein, which is a regulator of the Wnt and Notch pathways, perturbs the intestinal architecture, has pro-proliferative properties and tumorigenic potential.
59

Etude de la protéine de liaison à l’ARN LIF2, partenaire de la protéine chromatinienne LHP1, chez Arabidopsis thaliana / Study oh the RNA-binding protein LIF2, partner of the chromatin component LHP1, in Arabidopsis t haliana

Leroux, Clémentine 08 February 2013 (has links)
La dynamique chromatinienne joue un rôle central dans les contrôles développementaux, la différenciation cellulaire ou les réponses des organismes à l’environnement. Chez les animaux, les protéines du groupe Polycomb sont impliquées dans l’établissement d’états chromatiniens silencieux. Chez les plantes, des données récentes suggèrent que la protéine LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) participerait à un complexe de type Polycomb. Nous nous sommes intéressés aux complexes LHP1 en étudiant un de ses partenaires, LHP1 INTERACTING FACTOR 2 (LIF2). L’objectif de ce travail de thèse a été de poursuivre la caractérisation de LIF2. LIF2 se caractérise par la présence de domaines de liaison à l’ARN, suggérant la participation d’une composante ARN dans les complexes LHP1. Nous avons recherché des ARN ligands de LIF2 et étudié les interactions LIF2/ARN par différentes approches dont la technologie Biacore. En analysant le transcriptome du mutant lif2, nous avons remarqué un enrichissement pour des gènes impliqués dans la réponse aux stress biotiques et abiotiques. Nous avons étudié la fonction de LIF2 dans la réponse aux pathogènes et avons pu mettre en évidence que LIF2 joue un rôle dans l’immunité innée des plantes et est essentiel pour réguler négativement les réactions de défenses en l’absence de pathogènes. / Chromatin dynamics play a central role in developmental control, cell differentiation or responses of the organisms to environment. In animals, Polycomb group proteins are involved in the establishment of silent chromatin states. In plants, recent data suggest that LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) participates to a Polycomb-like complex. We focused on LHP1 complexes by studying one of its partners, LHP1 INTERACTING FACTOR 2 (LIF2). The aim of this thesis was to pursue the characterization of LIF2. LIF2 is composed of RNA-binding domains, suggesting the participation of an RNA component in LHP1 complexes. We have searched for LIF2 RNA-ligands and studied LIF2/RNA interactions with different approaches including Biacore technology. By analyzing the transcriptome profile of lif2, we have noticed an enrichment for genes involved in responses to abiotic and biotic stresses stimuli. We investigated the LIF2 functions in response to pathogens infection and we have been able to highlight that LIF2 plays a role in plant innate immunity and is essential to negatively regulate defense responses in the absence of pathogens.
60

Purification and identification of specific RNA-binding protein that binds to the 3'UTR region of cytochrome P450aromatase mRNA in bovine granulosa cells

Xue, Siqi January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0912 seconds