• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 184
  • 52
  • 22
  • 18
  • 16
  • 14
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 941
  • 366
  • 313
  • 127
  • 106
  • 99
  • 74
  • 72
  • 70
  • 61
  • 59
  • 59
  • 55
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Gene expression and BSE progression in beef cattle

Bartusiak, Robert 11 1900 (has links)
Bovine Spongiform Encephalopathy (BSE) belongs to a group of neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs) which affect many species. From 1986 more than 184,000 cattle in the UK have been confirmed to be infected with this disease, and in Canada total losses to the economy reached $6 billion. This study examines the gene expression in three major innate immunity components: complement system, toll-like receptors, interleukins, and selected proteins of their signaling pathways. Quantitative real time polymerase chain reaction analyses were performed on caudal medulla samples to identify differentially expressed genes between non-exposed and orally challenged animals. In general, immune genes were down-regulated in comparison to non-challenged animals during first 12 months of disease with a tendency to be up-regulated at terminal stage of BSE. The results from this study provide a basis for further research on the mechanisms modifying immune responses and altering progression of the disease. / Animal Science
532

The Identification and Characterisation of LRIG Gene Family and Its Expression in Astrocytic Tumours

Guo, Dongsheng January 2004 (has links)
Gliomas are the most common primary brain tumours, and their capacity to invade surrounding normal brain prevents complete removal of the tumour. Malignant glioma has still a poor prognosis. However, with the rapid development of molecular biology our understanding about glioma has increased dramatically. Among known growth factors, EGF and its receptor are frequently amplified and over expressed in malignant glioma. Therefore, it is of interest to find approaches to hamper the activity of EGF/EGFR. The aim of this thesis was to identify and characterize human analogues to a recently identified gene in Drosophilia, kekkon-1, which negatively regulates the activity of Drosophilia EGF receptor. In the first part, we set up a quantitative real-time RT-PCR assay, which showed good linearity, reproducibility and uniformity. We analyzed the expression of the most commonly used reference genes, and showed that 18S was the most reliable endogenous reference gene in this study. In the second part, we cloned, identified, and sequenced a gene family, which we named leucine-rich repeats and immunoglobulin–like domains family (LRIG). The LRIG gene family had three vertebrate paralogs and one homolog in ascidiacea. The proteins encoded by human LRIG genes shared an overall structure with a signal peptide, 15 tandems leucine-rich repeats with N- and C- terminal flanking regions followed by 3 immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tail. Northern blot showed the mRNA sizes to be 5.5 kb for LRIG1, 4.8 kb for LRIG2, and 5.1 kb for LRIG3. LRIG1-3 mRNAs were detected in all human and mouse tissues analyzed, however, at various levels. FISH and BLAST analysis showed that LRIG1 was located at 3p14, LRIG2 at 1q13, and LRIG3 at 12q13. LRIG1 was shown to be down-regulated in several cancer cell lines and proposed to be a tumour suppressor gene. In the third part, we analysed the expression of LRIG gene family in human astrocytic tumours. LRIG1-3 mRNAs were detected in all human glioma cell lines, in primary tumour tissues and control-matched normal brain tissues, at various levels. Subcellular localizations of LRIG1-GFP fusion proteins were visualized in nuclear, perinuclear, and cytoplasmic compartment. According to the predicted protein sequences, short peptides were synthesized and used to raise antibodies in rabbits. The antibodies were used for immunohistochemical analysis of LRIG1-3 in 404 human astrocytic tumours in a tissue micro array. The pattern of immunoreactivity of LRIG1-3 was heterogeneous with staining in nuclear, perinuclear and cytoplasmic compartment of positive tumour cells. Perinuclear staining of LRIG1-3 displayed a significant inverse correlation with WHO grade and especially positive LRIG3 perinuclear and cytoplasmic staining correlated with a low proliferation index. The LRIGs correlated with survival, and LRIG3 perinuclear staining was in addition to tumour grade an independent prognostic factor. The results suggest that LRIGs may play a role in normal tissue, and may be of importance in the pathogenesis and prognosis of tumours. The exact function of LRIG1-3 remains to be established.
533

Development of Molecular Biology and Bioinformatics Tools : From Hydrogen Evolution to Cell Division in Cyanobacteria

Lopes Pinto, Fernando January 2009 (has links)
The use of fossil fuels presents a particularly interesting challenge - our society strongly depends on coal and oil, but we are aware that their use is damaging the environment. Currently, this awareness is gaining momentum, and pressure to evolve towards an energetically cleaner planet is very strong. Molecular hydrogen (H2) is an environmentally suitable energy carrier that could initially supplement or even substitute fossil fuels. Ideally, the primary energy source to produce hydrogen gas should be renewable, and the process of conversion back to energy without polluting emissions, making this cycle environmentally clean. Photoconversion of water to hydrogen can be achieved using the following strategies: 1) the use of photochemical fuel cells, 2) by applying photovoltaics, or 3) by promoting production of hydrogen by photosynthetic microorganisms, either phototrophic anoxygenic bacteria and cyanobacteria or eukaryotic green algae. For photobiological H2 production cyanobacteria are among the ideal candidates since they: a) are capable of H2 evolution, and b) have simple nutritional requirements - they can grow in air (N2 and CO2), water and mineral salts, with light as the only energy source. As this project started, a vision and a set of overall goals were established. These postulated that improved H2 production over a long period demanded: 1) selection of strains taking in consideration their specific hydrogen metabolism, 2) genetic modification in order to improve the H2 evolution, and 3) cultivation conditions in bioreactors should be exmined and improved. Within these goals, three main research objectives were set: 1) update and document the use of cyanobacteria for hydrogen production, 2) create tools to improve molecular biology work at the transcription analysis level, and 3) study cell division in cyanobacteria. This work resulted in: 1) the publication of a review on hydrogen evolution by cyanobacteria, 2) the development of tools to assist understanding of transcription, and 3) the start of a new fundamental research approach to ultimately improve the yield of H2 evolution by cyanobacteria.
534

Investigation of hoxa2 gene function in palate development using a retroviral gene delivery system

Wang, Xia 19 April 2006
Cleft palate is a common human birth defect caused by any process which interferes with palatogenesis. Studies in Hoxa2 mutant (Hoxa2-/-) mice which exhibit a secondary cleft palate were reported to be due to an abnormal positioning of the tongue which prevents normal palatal shelf fusion to occur. To obtain direct evidence for the importance of Hoxa2 in murine palate development, an in vitro whole organ palatal culture model was developed, eliminating any influences from the tongue. A retroviral gene delivery system was employed, containing either Hoxa2 sense or Hoxa2 antisense cDNA, to respectively enhance or knockdown the expression of Hoxa2 mRNA in the developing palate. <p>Our results show that palatal cultures infected with the lowest titer of Hoxa2 sense virus induce a fusion rate of 72.7%, which is similar to palatal cultures treated with the control virus (81.8%), although fusion rates of 41.2% to 50.0% were observed in palates infected with higher titers. With the antisense virus treated group, a more profound inhibition of the fusion rate was observed (27.7% - 46.1%), which is comparable with the frequency of palatal fusion in Hoxa2-/- mice (44.4%). Additionally, the palatal shelves in both sense and antisense virus treated groups appear to be relatively shorter in length, than those measured in the control group. Interestingly, in the antisense virus treated group, the ratio of the length of the fused portion to the length of palatal shelves appears to be relatively large compared to the control group. Verification and quantification of Hoxa2 mRNA in the developing palate between E12.5 and E15.5 was performed by real-time RT-PCR. Hoxa2 gene expression was observed at all stages studied, with expression being the highest at E12.5 and declining from E13.5. The expression level remained constant from E13.5 through E15.5. These findings demonstrate for the first time that Hoxa2 may play a direct role in murine palate development. Results suggest that both factors (the absence of Hoxa2 gene in the palate causing delayed palatal development, as well as the position of the tongue) appear to act in unison to produce cleft palate in Hoxa2 knockout mice.
535

Bartonella Henselae Inhibits Cellular Apoptotic Regulators to Ensure Survival

Parker, Jeffery Todd 01 December 2009 (has links)
Human pathogens survive anti-pathogen host immune assault by either circumventing or evading the host immune response. Bartonella henselae, an intracellular pathogen previously shown to disrupt intrinsic apoptotic messengers to enhance its survival, exploits multiple facets of the cellular apoptotic mechanisms. Cellular pathways affected by apoptotic processes were assessed using real-time reverse-transcriptase-polymerase-chain-reaction (rRT-PCR) to measure the effect of B. henselae on cell regulator gene expression (TRADD, FADD, caspase-8 and caspase-3), caspase activity, DNA cell cycle analysis, cell regulator protein expression and overall cell viability and morphology. The presence of B. henselae suppresses overall gene expression for TRADD and FADD and it dramatically suppresses ceramide-induced TRADD and FADD gene expression. The presence of B. henselae has a noticeable effect on ceramide-induced caspase-8 and caspase-3 gene expression. Only caspase-3 enzymatic activity was ceramide-induced and likewise supressed by the presence of B. henselae, whereas caspase-6 and caspase-8 were unaffected and equivalent to controls. The presence of B. henselae inhibits ceramide-induced DNA fragmentation, maintains overall cell morphology and enhances host cell viability. Lastly, B. henselae inhibits the time-dependant ceramide-induction of TRADD protein and suppresses ubiquitous FADD protein expression. We demonstrated that B. henselae inhibits apoptotic induction in a systematic manner following exogenous apoptotic induction. B. henselae protection of microvascular endothelial cells from apoptosis induction begins at the modulation of cell surface receptor-dependent signaling. B. henselae minimizes, but does not completely abrogate, the cytotoxic effect of the apoptogenic shingolipid ceramide on human microvascular endothelial cells (CDC.EU.HMEC-1). Broadening our understanding of the sequence of cell regulator suppression events by intracellular pathogens will provide insight into disease manifestation. Further, understanding how infected cells initiate and conclude apoptosis will open new avenues into the study of disease treatment.
536

Identification Of The Genes Involved In &amp / #65533 / phytosiderophore&amp / #65533 / Synthesis And Metal Ion Uptake In Wheat Using Rt-pcr

Aktas, Yasemin 01 September 2003 (has links) (PDF)
Soils in many agricultural areas have high pH, resulting in low availability of zinc and iron. Plants grown on such soils suffer from either Zn or Fe deficiency or both. The efficient plant genotypes grown normally in calcerous soils were found to evolve some strategies to acquire the iron which is in insoluble form. Iron efficient graminaceous monocots release iron chelating substances, mugineic acid family phytosiderophores (MAs), in response to iron deficiency stress. Several researchers have suggested that phytosiderophores also can play role in grass Zn nutrition and thus it may be possible that it is the uptake mechanism for Zn efficiency. Several possible genes that take role in phytosiderophore synthesis or found to be induced under iron deficient conditions were identified in several organisms but not on wheat. In this study, the efficient barley cultivar Tokak-157, efficient wheat cultivar Kira&ccedil / -66 and relatively less efficient wheat cultivar BDMM-19 were grown in normal growth conditions for 1 week and transfered to zinc deficient, iron deficient and both zinc and iron deficient nutrient solutions. After growing 1 week on these conditions, plants grown on both zinc and iron deficient nutrient solutions were retransfered to zinc and iron sufficient conditions. Degenerate primers were designed for the conserved regions of previously identified genes that take role in phytosiderophore synthesis or induced under iron deficient conditions and RT-PCRs were performed. The complete open reading frame of IDI-1(Iron deficiency induced-1) gene and the putative gene fragment for SAM-s (S-adenosylmethionine synthetase) were identified.
537

Investigation of hoxa2 gene function in palate development using a retroviral gene delivery system

Wang, Xia 19 April 2006 (has links)
Cleft palate is a common human birth defect caused by any process which interferes with palatogenesis. Studies in Hoxa2 mutant (Hoxa2-/-) mice which exhibit a secondary cleft palate were reported to be due to an abnormal positioning of the tongue which prevents normal palatal shelf fusion to occur. To obtain direct evidence for the importance of Hoxa2 in murine palate development, an in vitro whole organ palatal culture model was developed, eliminating any influences from the tongue. A retroviral gene delivery system was employed, containing either Hoxa2 sense or Hoxa2 antisense cDNA, to respectively enhance or knockdown the expression of Hoxa2 mRNA in the developing palate. <p>Our results show that palatal cultures infected with the lowest titer of Hoxa2 sense virus induce a fusion rate of 72.7%, which is similar to palatal cultures treated with the control virus (81.8%), although fusion rates of 41.2% to 50.0% were observed in palates infected with higher titers. With the antisense virus treated group, a more profound inhibition of the fusion rate was observed (27.7% - 46.1%), which is comparable with the frequency of palatal fusion in Hoxa2-/- mice (44.4%). Additionally, the palatal shelves in both sense and antisense virus treated groups appear to be relatively shorter in length, than those measured in the control group. Interestingly, in the antisense virus treated group, the ratio of the length of the fused portion to the length of palatal shelves appears to be relatively large compared to the control group. Verification and quantification of Hoxa2 mRNA in the developing palate between E12.5 and E15.5 was performed by real-time RT-PCR. Hoxa2 gene expression was observed at all stages studied, with expression being the highest at E12.5 and declining from E13.5. The expression level remained constant from E13.5 through E15.5. These findings demonstrate for the first time that Hoxa2 may play a direct role in murine palate development. Results suggest that both factors (the absence of Hoxa2 gene in the palate causing delayed palatal development, as well as the position of the tongue) appear to act in unison to produce cleft palate in Hoxa2 knockout mice.
538

Comparison of real-time PCR assays for screening of meticillin-resistant Staphylococcus aureus

Sharif, Sanaz January 2011 (has links)
Staphylococcus aureus belongs to the normal flora. Many healthy people are colonized by the bacterium mainly in the nose but also on the skin and on other mucous membranes without showing symptoms. After damage to the skin, the bacterium can enter the wound and cause infections. Methicillin-resistant S. aureus (MRSA) is resistant to b-lactam antibiotics such as penicillin and methicillin. The gene that gives resistance characteristic of MRSA is the mecA-gene. MRSA strains are spread in both hospitals and in the community, and it is important to identify these bacteria with rapid and sensitive methods. In this study, Taq Man RT-qPCR was compared with SYBR Green RT-qPCR (LightCycler480, Roche) to explore which method had the best sensitivity with the least working hours. In addition, Bullet for automated DNA extraction and CAS 1200 ™ for automated pipetting of the samples were evaluated. Twelve patient isolates and 232 patient samples for MRSA screening were included in the study. The results showed that the primers were of major importance for the outcome of the amplification. It was also shown that the Ct-values were clearly lower when the Bullet, CAS 1200 ™ and LightCycler480 were combined compared with manual DNA extraction, manual pipetting and the Rotor-Gene 6000. In future, the former method will be used by the laboratory when screening patient samples for MRSA.
539

Expression of defense genes in sorghum grain mold and tagging and mapping a sorghum anthracnose resistance gene

Katile, Seriba Ousmane 15 May 2009 (has links)
Sorghum grain mold and anthracnose are two major diseases of sorghum (Sorghum bicolor) that constrain sorghum production worldwide. Grain mold is caused by several species of fungi, but the two most common are Curvularia lunata and Fusarium thapsinum. Isolates of these two species were used to inoculate panicles of selected sorghum cultivars in green house and field experimentations. Panicles were sprayed at the time of anthesis with conidial suspensions of the two fungal species individually or in a mixture and with water to serve as a control. Samples were collected 48 hours after inoculation for RNA extraction. In greenhouse studies, four cultivars (Tx2911, Sureno, SC170 and RTx430) were used while thirteen cultivars were grown in the field experiments. Gene expression was measured for the following genes using real time polymerase chain reactions (rt-PCR): PR10, β-glucanase, chitinase, thaumatin, sormatin, phenyalanine ammonia lyase (PAL), obtusifoliol 14α-demethylase (Obtus), antifungal protein (AFP), apoptosis related protein (Apop) and leucine rich repeat (LRR). Seed germination tests in field grown cultivars indicated that germination rates for SC279-14E, SC660 and Sureno were not greatly influenced by grain mold. Covering the panicles with bags served to protect them against grain mold pathogens. The seed mycoflora test showed that Fusarium thapsinum was the most frequently recovered species and there were more species present in non-covered panicles. The response of sorghum cultivars to grain mold infection involves multiple defense genes. Real time PCR used to study the expression of sorghum defense in greenhouse grown plants showed that mRNA encoding PR-10, a small 10 kDa protein, was highly expressed in the glumes and spikelets of resistant cultivars Tx2911 and Sureno and constitutively in leaves. The expression of some other defense genes like beta-glucanase, chitinase and AFP was variable. Sormatin was not expressed. Expression of β-glucanase, chitinase, and PR10 was higher in field than in greenhouse experiments. A second area of research involved tagging of a resistance gene for sorghum anthracnose. Three AFLP markers (Xtxa607, Xtxa3181 and Xtxa4327) and three SSRs (Xtxp3, Xtxp55 and Xtxp72) were identified. These markers were loosely linked to the resistance genes. The markers are located on linkage group B. The results suggest that markers located 20-30 cM on one side or the other of those tested should provide useful tags for the resistance gene.
540

Effect Of Cold Stress On Barley (hordeum Vulgare L.) Superoxide Dismutase Isozyme Activities And Expression Levels Of Cu/znsod Gene

Kayihan, Ceyhun 01 July 2007 (has links) (PDF)
In this study, effect of cold stress and recovery on the superoxide dismutase (SOD) activities and the expression levels of Cu/ZnSOD gene were investigated in two barley cultivars (Tarm-92-winter type, Zafer-160-spring type). Eight days old barley seedlings were subjected to two different cold stresses / chilling stress at 4&deg / C for 1, 3, 7 days and freezing stress at -3&deg / C and -7&deg / C. Analyses were performed both on leaf and root tissues. The SOD activities and isozyme patterns were determined by Native PAGE activity staining technique. Relative RT-PCR was used for the transcript levels of Cu/ZnSOD gene. The SOD activities and expression levels of control and cold stressed plants were compared by densitometric analysis. Under chilling stress, the activities of Cu/ZnSODx and Cu/ZnSOD2 did not have any significant change in leaf and root tissues of both cultivars. However, the expression levels of Cu/ZnSOD gene were more variable than activity results. After -3&deg / C freezing stress, the activities of SOD enzyme in leaf tissues of Tarm-92 increased significantly, however, these activities significantly decreased in leaves of Zafer-160. These results suggested that both cultivars were not affected by chilling stress in terms of SOD enzyme activities and expression levels. Furthermore, under freezing stress conditions, the increment of SOD activities and expression levels in Zafer-160 was higher than Tarm-92. In conclusion, the changes in SOD isozyme activities and expression levels may not be enough for understanding of the cold stress mechanism. Therefore, further studies have to be carried on other antioxidant enzyme systems.

Page generated in 0.0278 seconds