• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Realityserier, online vs TV : En undersökning om intresset för realityserier / Reality shows, online vs. TV : An investigation of the interest in reality shows

Sandberg, Sebastian January 2020 (has links)
The availability to stream movies and series online has increased immensely throughout this decade, being reliant on freeing up time during your day to be able to watch your favorite tv-show has become less necessary due to the fact that you’re able to stream it whenever you want or can, once it’s been released. Reality television has been a big part of the tv tabloid for almost two decades now and it had it’s peak in audience during the years 2009-2012 and has been reportedly decreasing the following years. There has been little to none research regarding reality tv’s progression and audience recently, which has made us curious as to its current state. This article aims to research whether or not the interest in watching romantically themed reality tv has had a continued decline these recent years due to its lack of content variation and if its audience has gradually gone over to streaming it online rather than watching it on tv. We have studied three different reality shows views online and on television per episode during the years of 2015-2018. This way, we could add the views online and on television together to see if the view count in total has increased or decreased each year, as well as being able to compare the difference in views online versus views on television each year to see if the quota who streams has increased. Our hypotheses were met with matching results from our rese
2

Achieving Complex Motion with Fundamental Components for Lamina Emergent Mechanisms

Winder, Brian Geoffrey 01 March 2008 (has links) (PDF)
Designing mechanical products in a competitive environment can present unique challenges, and designers constantly search for innovative ways to increase efficiency. One way to save space and reduce cost is to use ortho-planar compliant mechanisms which can be made from sheets of material, or lamina emergent mechanisms (LEMs). This thesis presents principles which can be used for designing LEMs. Pop-up paper mechanisms use topologies similar to LEMs, so it is advantageous to study their kinematics. This thesis outlines the use of planar and spherical kinematics to model commonly used pop-up paper mechanisms. A survey of common joint types is given, as well as an overview of common monolithic and layered mechanisms. In addition, it is shown that more complex mechanisms may be created by combining simple mechanisms in various ways. The principles presented are applied to the creation of new pop-up joints and mechanisms, which also may be used for lamina emergent mechanisms. Models of the paper mechanisms presented in Chapter 2 of the thesis are found in the appendix, and the reader is encouraged to print, cut out and assemble them. One challenge associated with spherical and spatial LEM design is creating joints with the desired motion characteristics, especially where complex spatial mechanism topologies are required. Hence, in addition to a study of paper mechanisms, some important considerations for designing joints for LEMs are presented. A technique commonly used in robotics, using serial chains of revolute and prismatic joints to approximate the motion of complex joints, is presented for use in LEMs. Important considerations such as linkage configuration and mechanism prototyping are also discussed. Another challenge in designing LEMs is creating multi-stable mechanisms with the ability to have coplanar links. A method is presented for offsetting the joint axes of a spatial compliant mechanism to introduce multi-stability. A new bistable spatial compliant linkage that uses that technique is introduced. In the interest of facilitating LEM design, the final chapter of this thesis presents a preliminary design method. While similar to traditional methods, this method includes considerations for translating the mechanism topology into a suitable configuration for use with planar layers of material.

Page generated in 0.0256 seconds