• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 11
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hodnocení porodní hmotnosti selat po kancích plemene Pn s různým genotypem genu RYR 1

Vitásek, David January 2007 (has links)
No description available.
2

3D RECONSTRUCTION OF RyR1 AND STRUCTURAL VALIDATION UNDER DIFFERENT LEVELS OF NOISE

Lobo, Joshua J 01 January 2014 (has links)
Ryanodine receptors (RyR) are intracellular channels that are intricately involved in Ca2+ release. These channels large membrane proteins~2.26MDa in size. In this multi-goal project firstly we successfully studied the gating mechanics of the RyR1 in the presence of Mg2+. We used single particle reconstruction and image processing techniques to obtain the 3D structure of the RyR1 with Mg2+. The 3D structure in the presence of Mg2+ and an ATP analog is the closest representation of human physiological conditions. The open and closed state structures of RyR1 are known. However, the physiologically closed state has not been studied before. Understanding this structure will help in the understanding of protein interactions. Our second goal was the validation of this 3D structure under different levels of noise. Validation under different noise levels analyzed the problem of noise bias is present in the field of cryo-EM and single particle reconstruction in select cases.
3

Vieillissement musculaire : impact de la protéolyse intracellulaire calcium-dépendante

Brulé, Cédric 25 November 2009 (has links)
La sarcopénie ou perte involontaire progressive de la masse musculaire chez le sujet âgé s’accompagne de l’altération de nombreux phénomènes physiologiques comparables à ceux observés chez les myopathes. Le processus de régénération musculaire est très ralenti, les activités protéolytiques intracellulaires sont modifiées et de nombreuses fonctions cellulaires sont perturbées en raison d’un stress oxydatif incontrôlé. L’intervention des calpaïnes, protéases neutres calcium-dépendantes, dans les processus associés au développement, à la régénération et à l’intégrité du tissu musculaire est incontestable. Les calpaïnes apparaissent, en effet, comme des acteurs clefs des voies de transductions liées à la myogenèse, la prolifération et la survie cellulaire. Toutefois aucune étude permettant d’établir la relation vieillissement du tissu musculaire- activité calpaïne n’a été entreprise à ce jour. Le projet a donc pour but principal d’inventorier les signaux pro-sarcopéniques interagissant avec les calpaïnes et d’établir leurs relations avec la fonctionnalité des cellules satellites, le stress oxydant et l’apoptose. Nous avons mis en évidence une augmentation de l’expression/activité des calpaïnes durant le vieillissement musculaire chez le rat et identifié des partenaires des calpaïnes impliqués dans des fonctions physiologiques altérées durant la sarcopénie: homéostasie calcique, activité contractile, production d’ATP, régénération musculaire. Nous avons également montré que l’induction d’un stress oxydant entraîne l’activation des calpaïnes au cours de la prolifération des cellules satellites de façon corrélée à une augmentation de l’apoptose. D’une manière intéressante, un traitement préventif par un antioxydant naturel d’écorce de pin (Oligopin®) est capable de prévenir à la fois l’apoptose et l’activation des calpaïnes. L’ensemble de ces résultats suggère que le stress oxydant associé au vieillissement induirait des mécanismes calpaïno-dépendants responsables de l’altération de processus essentiels à la fonction musculaire. / Aging is associated with a progressive and involuntary loss of muscle mass also known as sarcopenia. This condition represents a major public health concern. Although sarcopenia is well documented, the molecular mechanisms of this condition still remain unclear. The calcium-dependent proteolytic system is composed of calcium dependent cystein-proteases named calpains. Calpains are involved in a large number of physiological processes such as muscle growth and differentiation, and pathological conditions such as muscular dystrophies. The aim of this study was to determine the involvement of the proteolytic system in the phenotype associated with sarcopenia by identify the key proteins (substrates or regulators) interacting with calpains during muscle aging and identify pro-sarcopenic signals after oxidative stress induction in satellite cells. Muscle aging was correlated with the up-regulation of calpain activity. Ryanodine receptor 1, ATP synthase subunit alpha and alpha actinin 3 appear as key partners of calpains during muscle aging. Such interactions suggest an implication of calpains in many processes altered during aging including cytoskeletal disorganisation, regulation of calcium homeostasis and mitochondrial dysfunction. Furthermore, oxidative stress induction led to an increase in the activity of calpains correlated to an increase in apoptosis of proliferating satellite cells. In a very interesting way, a preventive treatment with a commercial antioxidant (Oligopin®) prevented these effects. All these data suggest that oxidative stress coupled observed during muscle aging could lead to calpaïno-dependent mechanisms responsible for apoptosis and muscle dysorganisation.
4

Kongenitální choroby prasat / Congenital disorders by pigs

MUSILOVÁ, Dagmar January 2012 (has links)
This diploma thesis follows the bachelor thesis and it?s task is to processing analysis of the occurrence of PSE meat in a population of the Czech white breed as a pigs stress syndrome impact. General problem of congenital diseases is processed in literature review. Further, this work deals with pigs stress syndrome and stress, which causes the meat defects as an external factor. Molecular - genetic methods, which are used in the practical part, are described as well. The research focused on genotyping of loci selected panel of samples, to determine the frequency of alleles and genotypes of selected locus and the statistical relationship between genotype and expression of PSE meat. Results were statistically processed and evaluated at the end.
5

Caractérisation de l'efflux calcique du réticulum sarcoplasmique du muscle squelettique normal et dystrophique / Characterization of sarcoplasmic reticulum calcium efflux in normal and dystrophic skeletal muscle fibers

Robin, Gaëlle 20 September 2013 (has links)
La contraction du muscle squelettique est initiée par une libération de Ca2+ du réticulum sarcoplasmique (RS) en réponse à une dépolarisation du sarcolemme. Celle-ci induit un changement de conformation du récepteur des dihydropyridines (DHPR) localisé dans les tubules T entraînant l'ouverture du récepteur de la ryanodine de type 1 (RyR1), canal calcique du RS, et la libération du Ca2+ accumulé dans le RS. Au repos, RyR1 serait maintenu fermé par une action répressive du DHPR. Néanmoins, un efflux de Ca2+ continu se développe à travers la membrane du RS, constamment compensé par l'activité des pompes Ca2+-ATPases. Des études suggèrent que cet efflux pourrait être impliqué dans la perturbation de l'homéostasie calcique dans une des pathologies musculaires des plus fréquentes et sévères, la myopathie de Duchenne. Le travail présenté vise à caractériser l'efflux de Ca2+ du RS dans les fibres musculaires squelettiques de souris normales et mdx, modèle murin de la myopathie de Duchenne, en couplant la technique de potentiel imposé et la mesure fluorimétrique du Ca2+ intracellulaire. La mise au point d'une mesure directe des variations de Ca2+ du RS à l'aide du Fluo-5N a permis de révéler dans les fibres mdx une fuite calcique du RS exacerbée. Cette approche a permis de démontrer que l'efflux calcique du RS dans la fibre musculaire squelettique au repos n'est pas un phénomène incontrôlé à travers RyR1 mais un efflux étroitement contrôlé par le DHPR. Enfin, on s'est intéressée à l'efflux de Ca2+ du RS lors d'une stimulation musculaire prolongée. Nos résultats montrent que le déclin du signal calcique cytosolique dans ces conditions résulterait de la déplétion calcique du RS / Contraction of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) in response to depolarization of the sarcolemma. Depolarization elicits a conformational change of the dihydropyridine receptor (DHPR) localized in the tubular membrane that controls the opening of the type 1 ryanodine receptor (RyR1), the SR Ca2+ release channel. At rest, RyR1s are kept in a closed state imposed by the repressive action of DHPRs. Yet, a resting Ca2+ efflux occurs across the SR membrane, constantly balanced by the pumping activity of SR Ca2+-ATPases. Several studies suggest that this SR Ca2+ efflux, considered as purely passive, may contribute to the alteration of Ca2+ homeostasis in one of the most common and severe skeletal muscle disease, namely the Duchenne Muscular Dystrophy. The present work aims at characterizing the SR Ca2+ efflux in skeletal muscle fiber from normal and mdx mice, the murine model of Duchenne Muscular Dystrophy, by combining voltage-clamp and intracellular Ca2+ measurements. The development of a methodology allowing direct monitoring of Ca2+ changes in the SR using the Fluo-5N led us to reveal an elevated SR Ca2+ leak in mdx fibers, which may contribute to the alteration of Ca2+ homeostasis. Still using this approach, we demonstrate that the resting SR Ca2+ efflux in normal skeletal muscle fiber is not, an uncontrolled process through RyR1 but is tightly controlled by DHPR. Finally, we investigates the SR Ca2+ efflux during long-lasting stimulation. Our data indicate that the decline of SR Ca2+ release in these conditions results from SR Ca2+depletion and does not involve voltage-dependent inactivation of SR Ca2+ release
6

Tuning Calcium Bindging Affinities with Related Biological Functions of Calmodulin and Designing Protein Based Contrast Agent

Jiang, Jie 11 August 2011 (has links)
Calmodulin (CaM) is a ubiquitous intracellular protein that regulates biological activities of numerous enzymes and ion channels. Upon responding Ca2+ concentration change, Ca2+- dependent CaM activates the hydrolyzation of cGMP by PDE and Ca2+ releasing channel activity of ryanodine receptor. In this dissertation, a series of CaM variants were engineered to enhance Ca2+ binding affinities by increasing the number of negative charged residues in individual EF-hand. The capability of shifting the biphasic Ca2+-activation profile of RyR1 is significantly altered by changing Ca2+ binding affinity of CaM at the C-terminal. This indicates that examining Ca2+-CaM affinity is a valid strategy to tune the activation profile of CaM-regulated ion channels. To further understand interactions between CaM and RyR1, NMR was used to determine their binding mode. To dissect roles of structural components of CaM in metal binding and regulation of biological functions of target proteins, we created half-CaMs and Del-CaM. Binding affinities of these variants to Ca2+, Tb3+ and Gd3+ were determined by fluorescence spectroscopy; functional studies were conducted using single channel analysis and PDE function assay. Another objective of my dissertation is to design a protein based contrast agent for molecular imaging. CaM was selected as the scaffold protein for designing Gd3+ based MRI contrast agent by modifying metal binding sites as well as grafting a biomarker peptide into the linker region to specifically target cancers with efficient and optimized modifications. The physical kinetic properties and animal imaging effects of these designed contrast agents were investigated by various methods.
7

Calcium and Redox Control of the Calcium Release Mechanism of Skeletal and Cardiac Muscle Sarcoplasmic Reticulum

Owen, Laura Jean 01 January 2011 (has links)
The sarcoplasmic reticulum is an internal membrane system that controls the Ca²⁺ concentration inside muscle cells, and hence the contractile state of both skeletal and cardiac muscle. A key protein that that regulates the Ca²⁺ concentration in this membrane is known as the calcium release channel (CRC). The effects on Ca²⁺ dependent activation is of major importance in the study of CRC since other channel modifiers cannot effect the channel in the absence of Ca²⁺, or they require Ca²⁺ for maximum results. In this study of the high-affinity Ca²⁺ binding site, expected increases in total binding and shifts in the sensitivity of the channel to Ca²⁺ were observed when the pH increased or the solution redox status became more oxidative. Ranolazine, a drug used for treating Angina Pectoris (chest pain), desensitized the cardiac CRC activation but had no effect on the skeletal CRC. This selective desensitization may be the cause of Ranolazine's beneficial therapeutic effects. Both Ranolazine, and homocystein thiolactone (HCTL), a naturally occurring derivative of homocysteine, alters Ca²⁺ dependent activation by calcium without changing the number of channels found in the open state. Surprisingly the effect of HCTL was observed only in a reduced redox potential which leads to speculation that the formation of an alpha-carbon radical by HCTL on the cardiac CRC only occurs if select thiols are in a reduced state.
8

Molecular architecture of Caveolin-3 and the investigation of an interaction with the ryanodine receptor

Whiteley, Gareth January 2012 (has links)
The muscle-specific membrane protein, Caveolin-3, is a building block of caveolae a type of specialised lipid raft. Caveolin-3 is proposed to play a central role in variety of cellular functions both structural and functional, from cell signalling to cholesterol homeostasis. Caveolin-3 has also been implicated in processes involved in targeting membrane proteins to the plasma membrane, as well as mediating a host of cell signalling processes. Initial attempts were made to express full-length Caveolin-3 in E.coli. However, more success was achieved in expressing and purifying domains of Caveolin-3. To produce purified full-length Caveolin-3 the baculovirus expression system was employed and we report here that the expression of Caveolin-3 in insect (Sf9) cells leads to the formation of caveolae comparable in size to those observed in native vesicles. We subsequently purified the recombinant Caveolin-3 and determined, using multi-angle laser light scattering, that the isolated protein forms an oligomer with a molecular mass of ~200-220kDa. Using negative-stain transmission electron microscopy in conjunction with single particle analysis we have determined the first three-dimensional structure for Caveolin-3 with data converging to suggest that it forms a nonamer. The 9-fold symmetric three-dimensional Caveolin-3 volume is toroidal, ~16.5nm in diameter and 5.5nm thick, and is characterised by an outer rim of protein connected to a central 'cone-shaped' domain. Labelling studies revealed that the C-terminal domain of each of the contributing Caveolin-3 monomers associate to form the central cone density. There is also evidence to suggest that Caveolin-3 is associated with a range of proteins involved in excitation-contraction coupling. Having identified multiple potential caveolin-binding motifs within the Ryanodine Receptor, one of the key protein components of excitation-contraction coupling, we have purified the skeletal isoform of the Ryanodine Receptor (Ryanodine Receptor-1) from sheep calf muscle and using several biophysical techniques probed whether there is an interaction between Caveolin-3 and Ryanodine Receptor-1. Co-immunoprecipitation experiments indicated that the two proteins do indeed interact, but functional studies for analysis of binding characteristics were inconclusive. In conclusion, this thesis describes both the successfully purification and structural determination of Caveolin-3, generating the first 3D data for any of the caveolin proteins, as well as work aimed at understanding its functional relationship with Ryanodine Receptor-1.
9

Malignant hyperthermia: allele specific expression and mutation screening of the ryanodine receptor 1 : a dissertation presented to Massey University in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry

Grievink, Hilbert January 2009 (has links)
Malignant hyperthermia (MH) is a dominant skeletal muscle disorder caused by mutations in the ryanodine receptor skeletal muscle calcium release channel (RyR1). Allele-specific differences in RyR1 expression levels might provide insight into the observed incomplete penetrance and variations in MH phenotypes between individuals. Firstly, an H4833Y allele-specific PCR (AS-PCR) assay was designed that allowed for the relative quantification of the two RYR1 mRNA alleles in heterozygous samples. In four MHS skeletal muscle samples and two lymphoblastoid cell lines (LCLs), the wild type allele was found to be expressed at higher levels than the mutant RyR1 allele. These differences were not caused by variations in RYR1 mRNA stabilities. Secondly, high-throughput amplicon sequencing was employed for the quantification of both the T4826I and H4833Y causative MH mutations in heterozygous MHS samples. With the exception of one, all detected H4833Y and T4826I mutation frequencies were about 50%. This included a control, which was constructed and proven to have a 3:1 ratio of the wild type (H4833) versus the mutant (Y4833) RYR1 allele. This suggested that that the high-throughput amplicon sequencing approach as used here, was not suitable for accurate quantification of the two RyR1 alleles in heterozygous H4833Y MHS samples. To detect possible variations in RyR1 alleles at the protein level, the RyR1 was to be isolated from microsomes prepared from a H4833Y MHS frozen skeletal muscle tissue. Microsomes isolated from MHS skeletal muscle tissues lacked the immunoreactive band that was believed to be the full length RyR1. Poor muscle quality, due to long term storage was believed to be the main cause of RyR1 depletion. Faster and less expensive screening methodologies are required for the identification of genetic variants in MH research. Thus, in an additional project inexpensive and high-throughput high-resolution melting (HRM) assays were developed to allow screening of the RYR1 gene, for mutations associated with MH and/or central core disease (CCD).
10

Mutation Spectrum in the Large Gtpase Dynamin 2, and Genotype-Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

Böhm, Johann, Biancalana, Valerie, DeChene, Elizabeth T., Bitoun, Marc, Pierson, Christopher R., Schaefer, Elise, Karasoy, Hatice, Dempsey, Melissa A., Klein, Fabrice, Dondaine, Nicolas, Kretz, Christine, Haumesser, Nicolas, Poirson, Claire, Toussaint, Anne, Greenleaf, Rebecca S., Barger, Melissa A., Mahoney, Lane J., Kang, Peter B., Zanoteli, Edmar, Vissing, John, Witting, Nanna, Echaniz-Laguna, Andoni, Wallgren-Pettersson, Carina, Dowling, James, Merlini, Luciano, Oldfors, Anders, Ousager, Lilian Bomme, Melki, Judith 01 June 2012 (has links)
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.

Page generated in 0.0304 seconds