Spelling suggestions: "subject:"radiomics"" "subject:"radiomicis""
41 |
Multimodal radiomics in neuro-oncology / Radiomique multimodale en neuro-oncologieUpadhaya, Taman 02 May 2017 (has links)
Le glioblastome multiforme (GBM) est une tumeur de grade IV représentant 49% de toutes les tumeurs cérébrales. Malgré des modalités de traitement agressives (radiothérapie, chimiothérapie et résection chirurgicale), le pronostic est mauvais avec une survie globale médiane de 12 à 14 mois. Les aractéristiques issues de la neuro imagerie des GBM peuvent fournir de nouvelles opportunités pour la classification, le pronostic et le développement de nouvelles thérapies ciblées pour faire progresser la pratique clinique. Cette thèse se concentre sur le développement de modèles pronostiques exploitant des caractéristiques de radiomique extraites des images multimodales IRM (T1 pré- et post-contraste, T2 et FLAIR). Le contexte méthodologique proposé consiste à i) recaler tous les volumes multimodaux IRM disponibles et en segmenter un volume tumoral unique, ii) extraire des caractéristiques radiomiques et iii) construire et valider les modèles pronostiques par l’utilisation d’algorithmes d’apprentissage automatique exploitant des cohortes cliniques multicentriques de patients. Le coeur des méthodes développées est fondé sur l’extraction de radiomiques (incluant des paramètres d’intensité, de forme et de textures) pour construire des modèles pronostiques à l’aide de deux algorithmes d’apprentissage, les machines à vecteurs de support (support vector machines, SVM) et les forêts aléatoires (random forest, RF), comparées dans leur capacité à sélectionner et combiner les caractéristiques optimales. Les bénéfices et l’impact de plusieurs étapes de pré-traitement des images IRM (re-échantillonnage spatial des voxels, normalisation, segmentation et discrétisation des intensités) pour une extraction de métriques fiables ont été évalués. De plus les caractéristiques radiomiques ont été standardisées en participant à l’initiative internationale de standardisation multicentrique des radiomiques. La précision obtenue sur le jeu de test indépendant avec les deux algorithmes d’apprentissage SVM et RF, en fonction des modalités utilisées et du nombre de caractéristiques combinées atteignait 77 à 83% en exploitant toutes les radiomiques disponibles sans prendre en compte leur fiabilité intrinsèque, et 77 à 87% en n’utilisant que les métriques identifiées comme fiables.Dans cette thèse, un contexte méthodologique a été proposé, développé et validé, qui permet la construction de modèles pronostiques dans le cadre des GBM et de l’imagerie multimodale IRM exploitée par des algorithmes d’apprentissage automatique. Les travaux futurs pourront s’intéresser à l’ajout à ces modèles des informations contextuelles et génétiques. D’un point de vue algorithmique, l’exploitation de nouvelles techniques d’apprentissage profond est aussi prometteuse. / Glioblastoma multiforme (GBM) is a WHO grade IV tumor that represents 49% of ail brain tumours. Despite aggressive treatment modalities (radiotherapy, chemotherapy and surgical resections) the prognosis is poor, as médian overall survival (OS) is 12-14 months. GBM’s neuroimaging (non-invasive) features can provide opportunities for subclassification, prognostication, and the development of targeted therapies that could advance the clinical practice. This thesis focuses on developing a prognostic model based on multimodal MRI-derived (Tl pre- and post-contrast, T2 and FLAIR) radiomics in GBM. The proposed methodological framework consists in i) registering the available 3D multimodal MR images andsegmenting the tumor volume, ii) extracting radiomics iii) building and validating a prognostic model using machine learning algorithms applied to multicentric clinical cohorts of patients. The core component of the framework rely on extracting radiomics (including intensity, shape and textural metrics) and building prognostic models using two different machine learning algorithms (Support Vector Machine (SVM) and Random Forest (RF)) that were compared by selecting, ranking and combining optimal features. The potential benefits and respective impact of several MRI pre-processing steps (spatial resampling of the voxels, intensities quantization and normalization, segmentation) for reliable extraction of radiomics was thoroughly assessed. Moreover, the standardization of the radiomics features among methodological teams was done by contributing to “Multicentre Initiative for Standardisation of Radiomics”. The accuracy obtained on the independent test dataset using SVM and RF reached upto 83%- 77% when combining ail available features and upto 87%-77% when using only reliable features previously identified as robust, depending on number of features and modality. In this thesis, I developed a framework for developing a compréhensive prognostic model for patients with GBM from multimodal MRI-derived “radiomics and machine learning”. The future work will consists in building a unified prognostic model exploiting other contextual data such as genomics. In case of new algorithm development we look forward to develop the Ensemble models and deep learning-based techniques.
|
42 |
Novel Radiomics and Deep Learning Approaches Targeting the Tumor Environment to Predict Response to ChemotherapyBraman, Nathaniel 29 May 2020 (has links)
No description available.
|
43 |
Systemic Identification of Radiomic Features Resilient to Batch Effects and Acquisition Variations for Diagnosis of Active Crohn's Disease on CT EnterographyPattiam Giriprakash, Pavithran 23 August 2021 (has links)
No description available.
|
44 |
Evaluation of Computer Tomography based Cancer Diagnostics with the help of 3D Printed Phantoms and Deep LearningBack, Alex, Pandurevic, Pontus January 2023 (has links)
Computed x-ray tomography is one of the most common medical imaging modalities andas such ways of improving the images are of high relevance. Applying deep learningmethods to denoise CT images has been of particular interest in recent years. In thisstudy, rather than using traditional denoising metrics such as MSE or PSNR for evaluation, we use a radiomic approach combined with 3D printed phantoms as a "groundtruth" to compare with. Our approach of having a ground truth ensures that we withabsolute certainty can say what a scanned tumor is supposed to look like and compareour results to a true value. This performance metric is better suited for evaluation thanMSE since we want to maintain structures and edges in tumors and MSE-evaluationrewards over-smoothing. Here we apply U-Net networks to images of 3D printed tumors. The 4 tumors and alung phantom were printed with PLA filament and 80% fill rate with a gyroidal patternto mimic soft tissue in a CT-scan while maintaining isotropicity. CT images of the 3Dprinted phantom and tumors were taken with a GE revolution DE scanner at KarolinskaUniversity Hospital. The networks were trained on the 2016 NIH-AAPM-Mayo ClinicLow Dose CT Grand Challenge dataset, mapping Low Dose CT images to Normal DoseCT images using three different loss functions, l1, vgg16, and vgg16_l1. Evaluating the networks on RadiomicsShape features from SlicerRadiomics® we findcompetitive performance with TrueFidelityTM Deep Learning Image Reconstruction (DLIR)by GE HealthCareTM. With one of our networks (UNet_alt, vgg16_l1 loss function with32 features, and batch size 16 in training.) outperforming TrueFidelity in 63% of caseswhen evaluated by counting if a radiomic feature has a lower relative error comparedto ground truth after our own denoising for four different kind of tumors. The samenetwork outperformed FBP in 84% of cases which in combination with the majority ofour networks performing substantially better against FBP than TrueFidelity shows theviability of DLIR compared to older methods such as FBP.
|
45 |
Evaluating Artificial Intelligence Radiology Models for Survival Prediction Following Immunogenic Regimen in Brain MetastasesGidwani, Mishka 27 January 2023 (has links)
No description available.
|
46 |
Machine Learning Enabled Radiomic And Pathomic Approaches For Treatment Outcome And Survival Prediction In GlioblastomaRuchika, . 25 January 2022 (has links)
No description available.
|
Page generated in 0.0261 seconds