• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 46
  • 28
  • 12
  • 8
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 305
  • 110
  • 67
  • 60
  • 50
  • 46
  • 39
  • 38
  • 37
  • 37
  • 32
  • 28
  • 28
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Particle Formation in RAFT-mediated Emulsion Polymerization

Leswin, Joost Sieger Kaspar January 2007 (has links)
Doctor of Philosophy(PhD) / Particle formation in RAFT-mediated emulsion polymerization has been studied using reaction calorimetry. By measuring the heat flow during controlled feed ab-initio emulsion polymerization in the presence of amphipathic RAFT agents, particle formation by self-assembly of these species could be observed. Two different monomer systems, i.e. styrene and n-butyl acrylate, and various degrees of hydrophobicity of the initial macro-RAFT agents have been studied and compared. The different macro-RAFT agents were synthesized by first forming a hydrophilic block of poly(acrylic acid) that would later on act as the electrosteric stabilizing group for the particles. Subsequently, different lengths of hydrophobic blocks were grown at the reactive end of the poly(acrylic acid) hydrophilic block via the RAFT-mediated controlled radical polymerization, either comprised of n-butyl acrylate or styrene. Two processes govern particle formation: adsorption of macro-RAFT agents onto growing particles and formation of new particles by initiation of micellar aggregates or by homogeneous nucleation. Competition between these processes could be observed when monomers with a relatively high (n-butyl acrylate) or low (styrene) propagation rate coefficient were used. A model describing particle formation has been developed and the results of model calculations are compared with experimental observations. Preliminary modeling results based on a set of reasonable physico-chemical parameters already showed good agreement with the experimental results. Most parameters used have been verified experimentally. The development of the molecular weight distribution of the macro-RAFT agents has been analyzed by different techniques. Quantification of the particle formation process by analytical techniques was difficult, but qualitative insights into the fundamental steps governing the nucleation process have been obtained. The amount of macro-RAFT agents initially involved in particle formation could be determined from the increase of molecular weight. The particle size distribution has been measured by capillary hydrodynamic fractionation, transmission electron microscopy and dynamic light scattering. From the data obtained from these particle-sizing techniques, the number of particles during the reaction could be monitored, leading to an accurate estimate for the particle formation time. Upon implementation of the experimental data obtained for the surface active macro-RAFT systems, the model demonstrated to be very sensitive towards the “headgroup” area of the macro-RAFT species. Three nucleation cases based on the initial surface activity of the macro-RAFT species in the aqueous phase are proposed to explain the deviations from the assumptions of the nucleation model. Even though the macro-RAFT species have a narrow molecular weight distribution, they are nevertheless made up of a distribution of block lengths of polystyrene upon a distribution of block lengths of poly(acrylic acid). The resulting differences in initial surface activity are the most probable reason for the observed differences between model calculations and experimental results for the nucleation time and particle size distribution of the final latex product. With the procedure described above, latexes have been synthesized without using conventional surfactants and the mechanisms involved in the particle formation for these systems have been elucidated. The results of this work enable production of latex systems with well defined molecular mass distributions and narrow particle size distributions. Furthermore, the technique based on the application of amphipathic RAFT agents is promising for the production of complex polymeric materials in emulsion polymerization on a technical scale.
12

Study of membrane-related effects of TSH in thyrocytes: TSH receptor localization and action, and Duox-TPO interaction

Song, Yue 10 November 2009 (has links)
1. Sphingolipid-cholesterol domains (lipid rafts) in normal human and dog thyroid follicular cells are not involved in thyrotropin receptor signalling. Thyroid hormone regulates growth and development throughout the animal kingdom. The thyroid which secretes it, is controlled by TSH and its receptor TSHR. TSH and its receptor TSHR act through TSHR-coupled G proteins to control thyroid functions, with a stronger coupling of the TSHR with Gs protein than with Gq protein in human thyrocytes. Gq is not activated by TSH/TSHR in dog, whereas dog TSHR activates it in CHO transfected cells. To better understand TSHR and its downstream effectors G proteins, we attempted to answer the questions by the role of “lipid rafts/caveolae” in TSH action. Lipid rafts/caveolae are sphingolipids-cholesterol-enriched microdomains on plasma membrane that have been proposed to play a role in signal transduction. By concentrating the signal molecules, lipid rafts/caveolae increase the efficiency of the interactions between the molecules and sequestrate them from the bulk membranes. The compartmentation of signal proteins in lipid rafts/caveolae might provide a possible explanation for the relationship between TSHR and G proteins in human and dog thyroctyes. To answer these questions, we first tested the existence of such lipid microdomains in human and dog thyrocytes. By northernblot and RT-PCR of caveolin-1 mRNA, we demonstrated its existence in thyrocytes. The immunohistochemistry of caveolin-1 showed that caveolin/caveolae are present on the apical membrane of thyrocytes, opposite to the TSHR localization on the basolateral membranes. The isolation of lipid rafts/caveolae by Triton X-100/OptiPrep density experiments showed that TSHR and Gq are not in the rafts, even though other proteins such as insulin receptor, flotillin-2 and partially Gs are present in these lipid domains, as expected. Testing the function of the TSH receptor on its main cascade (Gs-Adenylyl cyclase-cAMP) after treating the follicles with Methyl β-cyclodextrin (a cholesterol chelator), we observed no modification of the cAMP levels by this treatment. This is in agreement with our conclusion that the TSHR-Gs-cAMP pathway does not involve the lipid rafts/caveolae domain. TSH-activated signalling does not take place in these membrane domains. Therefore, the differences between species, concerning the TSHR-G proteins coupling cannot be explained by the presence of these membrane domains. 2. Species specific thyroid signal transduction: conserved physiology, diverged mechanisms As mentioned above, Gq proteins are activated in human but not in dog thyroid, in response to TSHR. However the dog TSH receptor is able to activate Gq, as demonstrated in transfected CHO cells. Thus, different thyroid signal transduction pathways exist in different species. In this study, we investigated the effects of TSH on its two signal transduction cascades, the cAMP pathway and the phospholipase C – IP3 – DAG pathway, as measured by cAMP levels and inositol phosphate generation. We also measured the effects of TSH and of agents stimulating specifically one of these cascades, forskolin for the cAMP pathway and Ca++ ionophore (ionomycin) and phorbolmyristate ester (TPA) for the phospholipase C pathway, on markers of thyroid hormone synthesis (H2O2 generation and iodide binding to proteins) and on thyroid hormone secretion in vitro in the various thyroids. We demonstrated that in all species investigated, the TSH receptor activates both hormone synthesis and secretion. While in some species, including humans, rats and mice, the TSH receptor activates both the cAMP and phospholipase C– IP3 – DAG cascades, in others (e.g. dog) it only stimulates the first. The cAMP pathway activates the limiting step in thyroid hormone synthesis, the generation of H2O2, in dog, rat and mice but not in human, pig, horse and beef. Thus physiology remains but the pathways to achieve it differ. On a practical point of view, these results allow to choose adequate animal models for investigating different aspects of human thyroid signalling. 3. Duoxes -TPO association and its regulation in human thyrocytes: the thyroxisome Duox (Dual Oxidase) and TPO (thyroid peroxidase) are the crucial enzymes for the thyroid hormones biosynthesis (T3/T4). TPO uses the hydrogen peroxide (H2O2) produced by Duox1 and Duox2 isoenzymes to covalently link oxidized iodide to tyrosines of thyroglobulin and couple the iodinated tyrosines to form triiodothyronine (T3) and thyroxine (T4). An excess of H2O2 is considered to be toxic for cells although at appropriate concentrations H2O2 may carry out signalling functions. Even though thyrocytes show a better resistance to H2O2 than other cells, it would be beneficial for thyrocytes if Duox and TPO localize closely to increase the working efficiency and avoid an excessive H2O2 spillage. In this study, we explored the association of Duox with TPO, and the possible factors affecting their interaction in the human thyrocyte model. This association was established by co-immunoprecipitation approaches on purified plasma membranes from human thyrocytes and COS-7 transfected cells. Our results show that 1) Duox and TPO localize closely at the plasma membranes of human thyrocytes, 2) this association is up-regulated through the Gq-PLC-Ca2+-PKC pathway and down-regulated through the Gs-cAMP-PKA pathway. 3) H2O2 directly increases the association of Duox and TPO. 4) Partial NH2- or COOH-terminal Duox1 and Duox2 proteins show different binding abilities with TPO in COS-7 transfected cells. The association of the two proteins Duox and TPO thus supports our previous hypothesis of the thyroxisome, a pluriprotein plasma membrane complex in which elements of the iodination apparatus localize closely, thus optimizing working efficiency and minimizing H2O2 spillage. Defect in this association, independently of the catalytic efficiency of the enzyme, could therefore impair thyroid hormone synthesis and be harmful to thyroid cells, leading to thyroid insufficiency.
13

Intracellular trafficking and plasma membrane microdomain distribution of the NSP4 enterotoxin during rotavirus infection in epithelial cells

Storey, Stephen Michael 15 May 2009 (has links)
Rotavirus (RV) nonstructural protein 4 (NSP4) is a multifunctional glycoprotein that induces secretory diarrhea in mouse pups in the absence of other viral proteins. The intracellular transport route(s) and functional mechanism(s) of NSP4 are poorly understood; however, the recent association of the enterotoxin with cellular caveolin-1 may provide a link between NSP4 transport and function. To determine if NSP4 traffics to a specific subset of lipid rafts at the plasma membrane (PM), we isolated caveolae from a PM-enriched fraction with a new method that yielded endoplasmic reticulum (ER)-free caveolae membranes with a unique membrane structure and composition. Comparison of these caveolae with other detergent- and non-detergent-extracted membranes revealed that each caveolae/raft fraction contained caveolae markers; however, only our PM caveolae fraction mimicked the membrane structure and sterol exchange dynamics of intact PM without ER or non-raft PM contaminants. When these PM caveolae were isolated from RV-infected cells, full-length, high-mannose glycosylated NSP4 was present. Confocal imaging showed association of NSP4 with caveolin-1 moving from perinuclear and cytoplasmic sites toward the PM as the infection progressed. Fluorescent imaging also indicated exposure of the NSP4 Cterminus at the exofacial PM surface without transport of the enterotoxin through the Golgi apparatus. Surface-specific biotinylation was used to confirm NSP4 exposure at the surface of infected MDCK cells and to determine that the exposed protein was fulllength and high-mannose glycosylated. This study presents an ER contaminant-free PM caveolae isolation methodology, identifies the presence of full-length, high-mannose glycosylated NSP4 in both PM caveolae and exposed at the cell surface, and confirms the Golgi-bypassing nature of NSP4 ER to PM transport in RV-infected MDCK cells.
14

Cell Biology of Caveolae and Its Implication for Clinical Medicine

FUJIMOTO, TOYOSHI 05 1900 (has links)
No description available.
15

Polybutadien und Butadien enthaltende Copolymere mit gezielt eingebauten vulkanisierbaren Gruppen durch RAFT-Polymerisation / Polybutadiene and butadiene containing copolymers with well-directed built-in vulcanisable functionalities via RAFT-Polymerisation

Conrad, Cathrin Sonja 29 October 2013 (has links)
Die RAFT-Polymerisation ("Reversible Addition-Fragmentation Chain Transfer") ist eine radikalische Polymerisation, die auf dem Prinzip des degenerativen Kettentransfers basiert. Es können Polymere hergestellt werden, die eine niedrige Dispersität aufweisen und komplexe makromolekulare Strukturen ausbilden. Für die Funktionalisierung von Polymerketten bietet sich die RAFT-Polymerisation ebenfalls an, da idealerweise jede auf diese Art hergestellte Polymerkette eine RAFT-Einheit trägt und so eine vollständige Funktionalisierung gewährleistet ist. Im Fokus dieser Arbeit stand die Funktionalisierung von Polybutadien und 1,3-Butadien enthaltenden Copolymeren mit gezielt eingebauten schwefelhaltigen Gruppen. Dabei wurden zwei verschiedene Ansätze verfolgt: Die α,ω-Funktionalisierung der Polymerketten mittels modifizierter RAFT-Agenzien sowie eine Funktionalisierung entlang der Polymerkette mit Hilfe von speziellen Monomeren. Da diese Polymere in technischen Anwendungen Verwendung finden sollen, standen einfache Synthesen, die sich gut auf den Technikums- und Industriemaßstab übertragen lassen, im Vordergrund. Da es sich bei der RAFT-Einheit auch um eine schwefelhaltige Gruppe handelt, wurden Strategien zur Funktionalisierung der Abgangsgruppe erarbeitet und experimentell untersucht, um so ein α,ω-funktionalisiertes Polymer zu erhalten. Neben klassischen RAFT-Agenzien wurden auch neuartige Makro-RAFT-Agenzien verwendet, bei denen die schwefelhaltige Gruppe während einer Polymerisation in situ angebunden wird. Darüber hinaus konnten erfolgreich Monomere synthetisiert werden, die wegen ihrer styrolähnlichen Struktur und der Ähnlichkeit der Monomere Styrol und 1,3-Butadien in ihrem Polymerisationsverhalten gut mit 1,3-Butadien copolymerisieren und dabei die schwefelhaltige Gruppe entlang der Polymerkette einbauen. Das Hauptaugenmerk weiterer Untersuchungen lag auf den Copolymerisationseigenschaften der Monomere. Dazu wurden umfangreiche Untersuchungen mit Styrol als Modellsystem für 1,3-Butadien durchgeführt und die gewonnenen Erkenntnisse in einer Copolymerisation der funktionalisierten Monomere mit 1,3-Butadien verifiziert. Es konnte weiterhin gezeigt werden, dass sich schaltbare RAFT-Agenzien für die Synthese von Poly(butadien)-block-poly(vinylacetat) eignen, obwohl es sich um zwei Monomere mit stark unterschiedlichen elektronischen Eigenschaften handelt, die in einer konventionellen radikalischen Polymerisation kein Copolymer bilden würden. Aufgrund der Ähnlichkeit der Monomere Vinylacetat und Ethylen eröffnet dies neue Wege in der kontrollierten radikalischen Polymerisation von Polybutadien-block-polyethylen und erweitert so das Spektrum der unpolaren Monomere in der RAFT-Polymerisation zur Herstellung von Blockcopolymeren.
16

Études de la dispersion et de l'encapsulation des nanotubes de carbone en milieu aqueux

Zhong, Wei Heng 01 1900 (has links) (PDF)
Depuis leur découverte, les nanotubes de carbone (CNT) ont connu de nombreux succès en raison de leurs performances mécaniques, électriques et thermiques exceptionnelles. L'exploitation de ces propriétés requiert néanmoins de pouvoir isoler les CNT, de les manipuler et de les localiser au sein d'un matériau d'architecture plus ou moins complexe. Pour cela, il est souvent nécessaire de disperser les CNT en raison de leur très grande insolubilité dans tout solvant. De nombreuses stratégies de dispersion reposent sur la stabilisation des CNT par des tensioactifs. Cependant, très peu d'études visent à déterminer les forces colloïdales mises en jeu, un des paramètres clés de la dispersion. Ainsi, la dispersion des CNT reste souvent un art plutôt qu'un processus bien contrôlé et maîtrisé. Dans cette étude, le mécanisme d'adsorption en milieu aqueux de quatre tensioactifs usuels a été clarifié, en particulier grâce à la détermination de leur isotherme d'adsorption. En se basant sur les résultats d'adsorption, des dispersions concentrées et sans agrégats de CNT ont été préparées et ensuite utilisées pour la formulation des nanocomposites polymériques. Une seconde méthode de dispersion est basée sur l'encapsulation des CNT par une écorce polymérique. Alors que la majorité de telles méthodes requiert la modification covalente des CNT, ce qui entraîne la détérioration des propriétés des CNT, nous présentons une méthode de dispersion et d'encapsulation des CNT qui ne nécessite pas de modification covalente de leur surface. Cette méthode se base sur l'adsorption physique des polymères préparés par polymérisation par transfert de chaîne de type addition et fragmentation, appelée polymérisation RAFT. Cette procédure d'encapsulation est versatile et permet la formation d'une couche polymérique homogène et continue sur la surface des CNT. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : nanotubes de carbone (CNT), dispersion, isotherme d'adsorption, encapsulation, polymérisation RAFT.
17

Carbohydrate and Phosphorylcholine based Polymers Prepared by Reversible Addition-Fragmentation Chain Transfer Polymerization for Gene Therapy

Ahmed, M Unknown Date
No description available.
18

Well defined stimuli-responsive cross-linked micelles as biocompatible drug/gene delivery system from RAFT polymerization

Zhang, Ling, Centre for Advanced Macromolecular Design, Faculty of Engineering, UNSW January 2009 (has links)
The objective of this thesis is to investigate well-defined cross-linked particles synthesized via the reversible addition fragmentation chain transfer (RAFT) process that can be used for drug delivery. To achieve this aim, a wide range of cross-linked micelle systems have been synthesized and intensively investigated. Various biocompatible monomers were employed, including poly (ethylene glycol) methyl ether methacrylate, 2-hydroxyl ethyl acrylate, functionalized glucosamine and nucleotides containing monomers. Different cross-linked structures were used, for example, core-cross-linked, nexus-cross-linked and shell-cross-linked micelles. Diverse stimuli-responsive particles were used, such as pH-sensitive, thermo-sensitive and thiol-sensitive cross-linked systems. Evidences of the successful synthesis of all the resulting cross-linked products are given. They displayed better properties, as drug carriers, than non-cross-linked micelles. A thermo-responsive seven-arm star glycopolymer, synthesized via the RAFT process, was also investigated.
19

Fabrication of honeycomb structured porous membranes for biological application

Min, Eun Hee , Centre for Advanced Macromolecular Design, Faculty of Engineering, UNSW January 2010 (has links)
This thesis studies the synthesis of diverse architectures of polymers via the reversible addition fragmentation chain transfer (RAFT) polymerisation process that is one of the most novel and versatile controlled polymerisation techniques. Star polymers, comb polymers, amphiphilic block copolymers, and random copolymers were utilised to fabricate porous films with hexagonal arrangement via a ???bottom-up??? engineering approach, namely a ???breath figure??? technique. The quality (i.e. pore regularity and pore size) of the films was optimised by controlling casting variables including humidity, airflow, concentration of polymer solution, polymer architecture, molecular weight of polymer, substrate, and casting volume. Porous membranes were chemically crosslinked to improve their mechanical strength if required. Furthermore, chemical surface modification of porous films was performed by grafting desired polymer (i.e. PNIPAAm or PAGA) via RAFT polymerisation. The RAFT groups present in the films play a role as anchoring sites for polymerisation, thus the complex initiator immobilising can be avoided in our system. The desired polymer grafting is able to enhance wettability and provide binding sites for adhesion and proliferation of cells. The topography of ungrafted and grafted films was analysed using optical microscopy, scanning electron microscopy, atomic force microscopy, confocal microscopy, ATR-FTIR, and XPS.
20

Particle Formation in RAFT-mediated Emulsion Polymerization

Leswin, Joost Sieger Kaspar January 2007 (has links)
Doctor of Philosophy(PhD) / Particle formation in RAFT-mediated emulsion polymerization has been studied using reaction calorimetry. By measuring the heat flow during controlled feed ab-initio emulsion polymerization in the presence of amphipathic RAFT agents, particle formation by self-assembly of these species could be observed. Two different monomer systems, i.e. styrene and n-butyl acrylate, and various degrees of hydrophobicity of the initial macro-RAFT agents have been studied and compared. The different macro-RAFT agents were synthesized by first forming a hydrophilic block of poly(acrylic acid) that would later on act as the electrosteric stabilizing group for the particles. Subsequently, different lengths of hydrophobic blocks were grown at the reactive end of the poly(acrylic acid) hydrophilic block via the RAFT-mediated controlled radical polymerization, either comprised of n-butyl acrylate or styrene. Two processes govern particle formation: adsorption of macro-RAFT agents onto growing particles and formation of new particles by initiation of micellar aggregates or by homogeneous nucleation. Competition between these processes could be observed when monomers with a relatively high (n-butyl acrylate) or low (styrene) propagation rate coefficient were used. A model describing particle formation has been developed and the results of model calculations are compared with experimental observations. Preliminary modeling results based on a set of reasonable physico-chemical parameters already showed good agreement with the experimental results. Most parameters used have been verified experimentally. The development of the molecular weight distribution of the macro-RAFT agents has been analyzed by different techniques. Quantification of the particle formation process by analytical techniques was difficult, but qualitative insights into the fundamental steps governing the nucleation process have been obtained. The amount of macro-RAFT agents initially involved in particle formation could be determined from the increase of molecular weight. The particle size distribution has been measured by capillary hydrodynamic fractionation, transmission electron microscopy and dynamic light scattering. From the data obtained from these particle-sizing techniques, the number of particles during the reaction could be monitored, leading to an accurate estimate for the particle formation time. Upon implementation of the experimental data obtained for the surface active macro-RAFT systems, the model demonstrated to be very sensitive towards the “headgroup” area of the macro-RAFT species. Three nucleation cases based on the initial surface activity of the macro-RAFT species in the aqueous phase are proposed to explain the deviations from the assumptions of the nucleation model. Even though the macro-RAFT species have a narrow molecular weight distribution, they are nevertheless made up of a distribution of block lengths of polystyrene upon a distribution of block lengths of poly(acrylic acid). The resulting differences in initial surface activity are the most probable reason for the observed differences between model calculations and experimental results for the nucleation time and particle size distribution of the final latex product. With the procedure described above, latexes have been synthesized without using conventional surfactants and the mechanisms involved in the particle formation for these systems have been elucidated. The results of this work enable production of latex systems with well defined molecular mass distributions and narrow particle size distributions. Furthermore, the technique based on the application of amphipathic RAFT agents is promising for the production of complex polymeric materials in emulsion polymerization on a technical scale.

Page generated in 0.0303 seconds