• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lining behaviour and ground movements associated with a complex of shallow tunnels

Sklucki, T. January 1984 (has links)
No description available.
2

Τεχνικογεωλογικές συνθήκες κατά τη διάνοιξη της σήραγγας Τράπεζας της Σ.Γ.Υ.Τ. Κιάτου – Αιγίου. Μηχανική συμπεριφορά των εκσκαπτώμενων αργιλικών ημιβράχων

Μαρκαντώνης, Αντώνης 19 January 2010 (has links)
Στην εργασία αυτή καταγράφονται οι τεχνικογεωλογικές συνθήκες κατά τη διάνοιξη της σιδηροδρομικής σήραγγας της Τράπεζας (Διακοπτό). Η έρευνα εντοπίζεται στο σχηματισμό του κατώτερου ορίζοντα των Νεογενών και συγκεκριμένα στους σχηματισμούς των μαργολίθων – ιλυολίθων οι οποίοι παρουσιάζουν συμπεριφορά σκληρών εδαφών – μαλακών βράχων και φιλοξενούν το μεγαλύτερο τμήμα της σήραγγας. / In this essay are described the technicogeological conditions throughout Trapeza (Diakopton) railway tunnel.The research is aimed at the formation of lower horizon of Neogens and more specific on the formation of mudstone, that behaves as soft rock-hard soil.
3

Τεχνικογεωλογικές συνθήκες κατά τη διάνοιξη της σιδηροδρομικής σήραγγας Αιγίου (Χ.Θ. 87+558,70 έως Χ.Θ.89+247,17) : συγκριτική θεώρηση της μηκοτομής πρόβλεψης με τις πραγματικές συνθήκες διάνοιξης

Κροκίδης, Σπυρίδων 07 October 2011 (has links)
Η παρούσα εργασία πραγματεύεται τις τεχνικογεωλογικές συνθήκες κατά τη διάνοιξη της σιδηροδρομικής σήραγγας Αιγίου, του τμήματος από τη Χ.Θ. 87+558,70 έως Χ.Θ.89+247,17. / This dissertation analyses the technical and geological conditions while opening up Aigion tunnel. It is a comparative regard of forecast section with the real conditions of opening up.
4

Railway Tunnels Management System in South Africa – Concrete Structural Elements

Thako, Luba Jean-Pierre 24 February 2020 (has links)
A reliable transportation network is key to economic development and social well-being of communities. Since 19th century, rail transport has provided the most efficient link between South African’s wealthy mineral heartland and the seaports. In developing this rail network, a considerable number of railway tunnels were built due to the topography of the coastal regions. These tunnels are ageing, their operational and environmental conditions are constantly changing. Thus, their management practice should be optimised to adequately respond to the needs of the organisations managing them and for them to continue providing a safe and sustainable service. Therefore, this study reviewed the current railway tunnels management practice in South Africa and proposed an approach to improve it, considering the existing structures management systems. Further, it focuses on the concrete structural elements and their related defects due to the harsh environments of these tunnels. Therefore, the Procedures to enhance tunnels management applied consisted in outlining the gaps uncovered in the current railway tunnels management practice in South Africa and enhance this practice considering the structures management systems reviewed. This is done by improving the components of each module and integrating them in the proposed railway tunnels management system in South Africa. First, it dealt with the inventory module, designed inventory forms for items and for concrete structural elements and their components to record, inspect and monitor. Second, it designed a Tunnel Inspection Programme that set the inspection intervals, the requirements for the inspection team members, the tools and techniques and procedures to apply. This programme specified also the method of evaluating the defects and the definition of the score and the relative score of the components of elements and the health of the tunnel. Third, it developed a Tunnel Monitoring System that targeted the most critical and vulnerable elements and set the techniques and tools to monitor them. Finally, it integrated all the modules in the system designed. As results, this research has proposed a computerised tunnel management system that enhances the current practice in South Africa. This arises from the scrutinised practice in light of the existing structures management systems reviewed. From the analysis of the existing inventory data on railway tunnels and on the heavy haul lines in South Africa, relevant information was obtained. Thus, an inventory module has been developed comprising tunnel inventory forms that classify the items to be recorded and inspected. This module also described the concrete structural elements and their specific components. A Tunnel Inspection Programme has been designed, specifying the frequency of inspections based on the condition of tunnels, their ages, and the unpredictability and the harshness of their environments. This programme has also promoted the relevant techniques to be applied to inspect concrete structural elements and the appropriate tools to be used. Additionally, the requirements for inspection team concerning the qualifications and experience of each member have been provided. This programme has also recommended the use of the current DER rating system, emphasising that the scope of this study refers to concrete structural elements that should all be rated and recorded. Additionally, it has designed a Tunnel Monitoring System specific to the most critical and vulnerable concrete structural elements of railway tunnels. This system includes a set of tunnel monitoring strategies, the setting up of the system and the sensory system. It finally integrated all these sub-systems into the main Railway Tunnel Management System in South Africa. In conclusion, this research proposes the integrated computerised railway tunnel management system for South Africa. It also set the “big picture” of the overall tunnel structures and the tunnels on the heavy haul lines currently managed by Transnet TFR in South Africa. Additionally, it sustains the current DER rating system and proposes its application to all the defects on the concrete structural elements, instead of the worst defect on the inspected element. As recommendations, the railway tunnels authority should adopt a monitoring system for each tunnel on the heavy haul lines. Also, the authority should make available information on all existing monitoring systems on railway tunnels and the most critical data collected. Moreover, the authority should make available the previous railway tunnels inspection files to be uploaded to the proposed system. Apart from this, we recommend a further comprehensive study to integrate the inspection of non-structural elements to the proposed system. Finally, we recommend to the management authority to organise a comprehensive study of the water leakage issues on railway tunnels to better understand and adequately respond to them.
5

Γενική παρουσίαση της σήραγγας του Αιγίου : γεωτεχνική αξιολόγηση από την Χ.Θ. 85+728.57 έως Χ.Θ. 89+247.17

Μπαλτά, Ειρήνη 09 January 2012 (has links)
Η σήραγγα εντάσσεται στο τμήμα από Χ.Θ. 75+000 έως Χ.Θ. 90+000 της νέας σιδηροδρομικής γραμμής Κορίνθου – Πατρών, η οποία είναι διπλής κατεύθυνσης και αναπτύσσεται στην ευρύτερη περιοχή της πόλεως του Αιγίου. Ειδικότερα, η υπόγεια χάραξη της νέας σιδηροδρομικής γραμμής διέρχεται αρχικά από την κατοικημένη περιοχή “Κουλούρα” και παρακάμπτοντας την πόλη του Αιγίου καταλήγει στην περιοχή του εργοστασίου “Κουνινιώτης”. Το έργο αφορά την κατασκευή της υποδομής στο υποτμήμα από Χ.Θ. 85+ 605 έως Χ.Θ. 89+119,95 με την κατασκευή της σιδηροδρομικής σήραγγας του Αιγίου, συνολικού μήκους 3514 m περίπου, των τριών στοών διαφυγής αυτής, ενός μικρού αριθμού τεχνικών έργων στις περιοχές εισόδου και εξόδου της σήραγγας και των στοών διαφυγής.Επιπλέον στην ευρύτερη περιοχή του έργου έγινε η κατασκευή τμήματος της υποδομής της ανοικτής σιδηροδρομικής γραμμής,από την αρχή της εργολαβίας μέχρι το στόμιο εισόδου της σήραγγας Αιγίου, καθώς επίσης και κατασκευή παράπλευρου οδικού δικτύου, εξυπηρέτησης της σιδηροδρομικής γραμμής και αποκατάστασης της κυκλοφορίας. Χ.Θ. ΥΠΟΓΕΙΟΥ ΜΗΚΟΣ(m) ΤΜΗΜΑΤΟΣ ΕΙΣΟΔΟΣ ΕΞΟΔΟΣ 85+840.54 89+089.95 3249.41 Πίνακας1: Χαρακτηριστικά στοιχεία της σήραγγας. Κατά την προχώρηση της σήραγγας η οποία έγινε μέσα σε μεταλπικά ιζήματα του νεογενούς, συναντήθηκαν αμμοχάλικα,αμμώδη υλικά,αργιλοϊλυώδη υλικά και μικτές συνθήκες. Οι μικτές συνθήκες κατατάσσονται σαν ιδιαίτερη ενότητα και αντιμετωπίσθηκαν λόγω των συχνών εναλλαγών, του μειωμένου πάχους και της δυσμενούς κλίσης των στρωμάτων κατά την κατεύθυνση ανατολικά – δυτικά, ως «μειωμένης μηχανικής αντοχής» υλικά.Λόγω της φύσης των υλικών ήταν απαραίτητη η χρήση δοκών προπορείας, και όλων των μέσων προσωρινής αντιστήριξης (πλαίσια, εκτοξευόμενο σκυρόδεμα, αγκύρια, πλέγμα) και στα σημεία που υπήρξε αυξημένη υδροφορία, έγινε χρήση μεμβρανών και συστηματικές αποστραγγιστικές οπές.Η εκσκαψιμότητα τους ήταν εύκολη με συνήθη μηχανικά μέσα. / The tunnel is integrated into the area from the K.P. 75+000 to the K.P. 90+000 of the new railway line Korinthos – Patra, which is bidirectional and it is growing in the wider area of the city of Aegio. In particular, the underground development of the new railway line passes firstly through the residential area " Kouloura " and bypassing the city of Aegio reaches the area of the factory named " Kouniotis ". The project concerns the construction of infrastructure in the sub – area from the K.P. 85+ 605 to the K.P. 89+119.95 with the construction of the railway tunnel of Aegio, of total approximate length 3514 KM, of its three of escape archways, of a small number of technical works in the entry and exit areas of the tunnel and the escape archways. In addition, in the wider area of the work it took place the construction of part of the infrastructure of the open railway line, from the beginning of the contract to the tunnel inlet of Aegio, as well as a construction of a side road network, serving the railway line and restoring the traffic. K.P. OF UNDERGROUND PART LENGTH OF UNDERGROUND PART (m) UNDERGROUND PART(m) ENTRY EXIT 85+840.54 89+089.95 3249.41 Table: Characteristics of the tunnel. During the progression of the tunnel, which took place in post alpine sediments of the neogene, they were met gravels, sandy materials, argil materials and mixed conditions. The mixed conditions are classified as a special module and they were regarded, because of the frequent rotations, the reduced thickness and the adverse gradient of the layers in the direction east – west, as being materials of " reduced mechanical strength ". Due to the nature of the materials it was necessary the use of head – beams and all temporary retaining means (frames, sprayed concrete, anchors, mesh) and in the points of increased aquifer it was made use of membranes and systematic drainage holes. Their excavation was easy with ordinary mechanical means.
6

Kartläggning av översvämnignshotade järnvägstunnlar med GIS : En fallstudie av Norralatunneln

Erik, Fridholm, Johan, Sjögren January 2014 (has links)
In August 2013 the Norrala tunnel just north of Söderhamn was flooded, which caused a train stuck in thetunnel. In the future the intensity and the amount of rainfall are expected to increase in this area, which canlead to an increased risk of flooding. The purpose of this study was to use GIS to investigate whether it is possible to identify which railroadtunnels that are exposed to flooding during heavy rainfall. In order to investigate this, a GIS analysis wasperformed on the Norrala tunnel. The data used for this study was the National Elevation Model. The result of the study contains maps representing the catchment area for the tunnels and wetness index forthe north and the middle rescue tunnel. The flood analysis shows that the rescue tunnel that was flooded in August 2013 has a catchment area of1,1km², which is 20 times as big as the catchment area for any of the other tunnel entrances. The studyshows that GIS is a great tool for flood mapping. With the chosen method in combination with theNational Elevation Model, it is possible to identify tunnels that are exposed to flooding. The field study that was performed shows that the Swedish property map has flaws concerning hydrology.More than 90% of the water that ended up in the tunnel came from the west side of the highway E4,through a passage for wildlife. After the tunnel, the water was initially directed through a manmade streamthat follows the route of the property map. Further down, the manmade stream disappears and the waterthen follows the topography to the protection barrier nearby the tunnel. In the study, no calculations were made about the amount of water that flooded to the tunnel during theflooding in August 2013. Investigations of the climate change indicate that the amount of rainfall willincrease in the area. Therefore a further investigation is recommended, where the goal should be to protectthe tunnel from flooding. The method that has been used is applicable at any type of infrastructure. The Swedish TransportAdministration is recommended to use this method to investigate infrastructure and for future planning. / I augusti år 2013 översvämmades Norralatunneln strax norr om Söderhamn, vilket orsakade att ett tåg fastnade i tunneln. I framtiden förväntas intensiteten och mängden nederbörd att öka i detta område, vilket kan leda till en ökad risk för översvämning. Syftet med examensarbetet var att med GIS undersöka om det går att identifiera vilka järnvägstunnlar som är översvämningshotade vid kraftig nederbörd. GIS-analyser utfördes på Norralatunneln, där den Nationella Höjdmodellen användes som indata till undersökningen. Resultatet av studien innehåller ett antal kartor som redovisar avrinningsområden för samtliga tunnelmynningar och fuktighetsindex för den norra och mellersta räddningstunneln. Översvämningsanalysen visar att den räddningstunnel som översvämmades i augusti år 2013 har ett avrinningsområde på 1,1 km², vilket är mer än 20 gånger så stort som avrinningsområdet för någon av de andra tunnelmynningarna. Studien visar att GIS är ett bra verktyg för översvämningskartering och med den valda metoden i kombination med den Nationella Höjdmodellen är det möjligt att identifiera översvämningshotade tunnlar. Den fältstudien som genomfördes visar på brister i fastighetskartan gällande vattendrag. Mer än 90 % av vattnet som rann in i tunneln kom från västsidan av E4:an genom en älgpassage. Därefter leddes vattnet ner mot räddningstunneln via en grävd bäck som till en början följer fastighetskartans sträckning. Den tydligt grävda bäcken försvinner dock och vattnet följer därefter topografin till skyddsdiket intill tunnelmynningen.  I arbetet gjordes inga beräkningar på hur mycket vatten som flödade ner till tunneln i samband med översvämningen. Undersökningar av framtida klimat visar på att nederbördsmängden i området kommer att öka. Därför rekommenderas en vidare studie där målet borde vara att ta fram ett lämpligt alternativ för att skydda tunneln från översvämning. Analyserna som har utförts är tillämpningsbara även på andra typer av infrastruktur, därför rekommenderas Trafikverket att använda sig av metoden vid projektering och undersökning av infrastruktur.
7

Rekonstrukce železničního tunelu / Reconstruction of the railway tunnel

Nekl, Jiří January 2013 (has links)
The diploma thesis engages in the reconstruction of railway tunnel Domasovsky that is situated at the track section Olomouc – Krnov. It illustrates the current state of the construction and the geotechnical conditons of the area of interest, it also presents the potencial solutions. The design is verified by stuructural analysis, the design documentation and technical report are also enclosed.
8

Návrh ražby a primárního ostění tunelu na stavbě vysokorychlostního železničního spojení / Design of excavation and primary tunnel lining on high-speed railway construction

Dostál, Tomáš January 2020 (has links)
As part of modernization of the Brno-Přerov railway line, is in the section between village Blažovice and town Vyškov desined tunnel composed of two monorail tubes about 640 meters length. Tubes are situated in neogenic clay with an overburden height of 11 meters. This master thesis deals with design suitable tunnel exavation, primary lining with static calculation and geotechnical monitoring.

Page generated in 0.4895 seconds