• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 117
  • 73
  • 56
  • 27
  • 17
  • 13
  • 11
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 668
  • 112
  • 99
  • 97
  • 79
  • 71
  • 62
  • 62
  • 61
  • 53
  • 52
  • 51
  • 50
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore Deposits

Robinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
652

The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore Deposits

Robinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
653

Testing of Ground Subsurface using Spectral and Multichannel Analysis of Surface Waves

Naskar, Tarun January 2017 (has links) (PDF)
Two surface wave testing methods, namely, (i) the spectral analysis of surface waves (SASW), and (ii) the multi-channel analysis of surface waves (MASW), form non-destructive and non-intrusive techniques for predicting the shear wave velocity profile of different layers of ground and pavement. These field testing tools are based on the dispersive characteristics of Rayleigh waves, that is, different frequency components of the surface wave travel at different velocities in layered media. The SASW and MASW testing procedure basically comprises of three different components: (i) field measurements by employing geophones/accelerometers, (ii) generating dispersion plots, and (iii) predicting the shear wave velocity profile based on an inversion analysis. For generating the field dispersion plot, the complexities involved while doing the phase unwrapping calculations for the SASW technique, while performing the spectral calculations on the basis of two receivers’ data, makes it difficult to automate since it requires frequent manual judgment. In the present thesis, a new method, based on the sliding Fourier transform, has been introduced. The proposed method has been noted to be quite accurate, computationally economical and it generally overcomes the difficulties associated with the unwrapping of the phase difference between the two sensors’ data. In this approach, the unwrapping of the phase can be carried out without any manual intervention. As a result, an automation of the entire computational process to generate the dispersion plot becomes feasible. The method has been thoroughly validated by including a number of examples on the basis of surface wave field tests as well as synthetic test data. While obtaining the dispersion image by using the MASW method, three different transformation techniques, namely, (i) the Park’s wavefield transform, (ii) the frequency (f) -wavenumber ( ) transform and (iii) the time intercept ( -phase slowness (p) transform have been utilized for generating the multimodal dispersion plots. The performance of these three different methods has been assessed by using synthetic as well as field data records obtained from a ground site by means of 48 geophones. Two-dimensional as well as three-dimensional dispersion plots were generated. The Park’s wavefield transformation method has been found to be especially advantageous since it neither requires a very high sampling rate nor an inclusion of the zero padding of the data in a wavenumber (distance) domain. In the case of an irregular dispersive media, a proper analysis of the higher modes existing in the dispersion plots becomes essential for predicting the shear wave velocity profile of ground on the basis of surface wave tests. In such cases, the establishment of the predominant mode becomes quite significant. In the current investigation for Rayleigh wave propagation, the predominant mode has been computed by maximizing the normalized vertical displacements along the free surface. Eigenvectors computed from the thin layer approach (TLM) approach are analyzed to predict the corresponding predominant mode. It is noted that the establishment of the predominant mode becomes quite important where only two to six sensors are employed and the governing (predominant) modal dispersion curve is usually observed rather than several multiple modes which can otherwise be identified by using around 24 to 48 multiple sensors. By using the TLM, it is, however, not possible to account for the exact contribution of the elastic half space in the dynamic stiffness matrix (DSM) approach. A method is suggested to incorporate the exact contribution of the elastic half space in the TLM. The numerical formulation is finally framed as a quadratic eigenvalue problem which can be easily solved by using the subroutine polyeig in MATLAB. The dispersion plots were generated for several chosen different ground profiles. The numerical results were found to match quite well with the data available from literature. In order to address all the three different aspects of SASW and MASW techniques, a series of field tests were performed on five different ground sites. The ground vibrations were induced by means of (i) a 65 kg mass dropped freely from a height of 5 m, and (ii) by using a 20 pound sledge hammer. It was found that by using a 65 kg mass dropped from a height of 5 m, for stiffer sites, ground exploration becomes feasible even up to a depth of 50-80 m whereas for the softer sites the exploration depth is reduced to about 30 m. By using a 20 lb sledge hammer, the exploration depth is restricted to only 8-10 m due to its low impact energy. Overall, it is expected that the work reported in the thesis will furnish useful guidelines for (i) performing the SASW and MASW field tests, (ii) generating dispersion plots/images, and (iii) predicting the shear wave velocity profile of the site based on an inversion analysis.
654

Lávka pro pěší přes lagunu / Pedestrian bridge across the lagoon

Bezručová, Kristína January 2018 (has links)
The aim of this thesis is the design and analysis of pedestrian bridge across the lagoon. Three variants were designed. The variant of structure, which combines stress ribbon with steel arches, was chosen for analysis. There is a chapter in this thesis which deals with an ideal shape of arches for different types of loads. The calculation of load effects was made in software Ansys 17.0, considering scnstruction stages. Ultimate limit state and state limit state are evaluated. For evaluation of concrete cross sections was used MS Excel. Steel cross sections were evaluated in software Ansys 17.0. d Dynamic behaviour of construction was assessed. The mode shapes and natural frequencies were calculated. The harmonic excitation response was studied. The loss of stability was checked. The design and assessment are according to the european standards.
655

Měření seismické činnosti pomocí optických vláknových senzorů / Seismic activity measurement using fiber optic sensors

Vaněk, Stanislav January 2018 (has links)
The aim of master's thesis is to get familiarized with the problems of measurement and analysis of seismic waves. Theoretical part deals with the description of seismic waves, especially their types, sources and properties. Attention was afterwards focused on the measurement systems of these waves, emphasis was placed on their principles and advantages. The practical part discusses methods of noise reduction and highlighting of significant events in measured data. At the end, individual methods are implemented into user-friendly graphical interface.
656

A Semi-Analytical Approach to Noise and Vibration Performance Optimization in Electric Machines

Das, Shuvajit 14 November 2021 (has links)
No description available.
657

Tagungsband zum 4. BIH-Treffen 2019: Interdisziplinäre Forschung - Chancen und Herausforderungen: Fachtagung für wissenschaftlich Beschäftigte und Nachwuchskräfte an Bauingenieur-Institutionen deutscher Hochschulen

Löwe, Benedict, Käßler, Daniel, Köllner, Florian, Kunze, Stefanie, Heinen, Bernd, Vogt, Isabelle, Freyer, Lola, Dridiger, Andreas, Weiler, Simon, Schönfeld, Larissa, Spörl, Sebastian 04 September 2019 (has links)
Forschung und Wissenschaft sind wichtige Standbeine einer modernen Hochschule. Sie stellen eine Grundlage für die primäre Aufgabe der Hochschulen dar, die praxisnahe und berufsbefähigende Lehre auf dem aktuellen Stand der Technik und Wissenschaft. Mittlerweile widmen sich auch die Hochschulen der Ausbildung von wissenschaftlichem Nachwuchs. Prosperierende Forschungsarbeit ist dafür ein unverzichtbarer Bestandteil. Der Leitgedanke „Interdisziplinäre Forschung – Chancen und Herausforderungen“ des BIH-Treffens 2019 soll zum fachübergreifenden Austausch von Know-how in Forschungs- und Lehrmethoden anregen. Eine große Bandbreite an Fachbeiträgen bietet spannende Einblicke in die Arbeit der Kolleginnen und Kollegen in den unterschiedlichen Fachbereichen des Bauwesens der zahlreichen deutschen Hochschulen. Dazu gehören Beiträge zu modernen Messmethoden in der Geotechnik und dem Bahnbau ebenso wie Forschungsergebnisse aus dem konstruktiven Ingenieurbau, der Baukonstruktion, der Haustechnik und der Verkehrsplanung und nicht zuletzt Erfahrungen zu interdisziplinären Lehrmethoden.:Einfluss der Nachverdichtung granularer Böden auf die Phasengeschwindigkeiten von Rayleighwellen Sommerliche Überhitzung in Wohngebäuden – Baukonstruktive und haustechnische Anpassungsmaßnahmen Die „Hochschulweite Interdisziplinäre Projektwoche (HIP)“ an der TH Köln – andere Welten kennenlernen! Forschungsprojekt „Duale Radlösung“ – Wahlfreie Führung als Mittel der Radverkehrslösung Zwang in Hochbaudecken aus Stahlbeton (Kooperative Promotion) Robustheit und Vulnerabilität der Wasserstraßeninfrastruktur Vergleichbarkeit der Messsysteme an Zug- und Biegeproben aus den Werkstoffen Stahl und Holz Entwicklung einer Messmethodik zur Bestimmung der Schienenbewegung unter dem rollenden Rad / Research and science are important mainstay of a modern university. They provide a basis for the primary task of the universities, the practical and occupational teaching on the current state of technology and science. In the meantime, the universities are also dedicating themselves to the training of junior scientists. Prospering research is an indispensable part of this. The guiding idea 'Interdisciplinary Research - Opportunities and Challenges' of the BIH meeting 2019 is intended to stimulate the interdisciplinary exchange of expertise in research and teaching methods. A wide range of specialist contributions provides exciting insights into the work of colleagues in the various specialized fields of civil engineering at numerous German universities. This includes papers to modern measuring methods in geotechnical engineering and railway construction, as well as research results from structural engineering, building construction, building technology and traffic planning, and last but not least, experience in interdisciplinary teaching methods.:Einfluss der Nachverdichtung granularer Böden auf die Phasengeschwindigkeiten von Rayleighwellen Sommerliche Überhitzung in Wohngebäuden – Baukonstruktive und haustechnische Anpassungsmaßnahmen Die „Hochschulweite Interdisziplinäre Projektwoche (HIP)“ an der TH Köln – andere Welten kennenlernen! Forschungsprojekt „Duale Radlösung“ – Wahlfreie Führung als Mittel der Radverkehrslösung Zwang in Hochbaudecken aus Stahlbeton (Kooperative Promotion) Robustheit und Vulnerabilität der Wasserstraßeninfrastruktur Vergleichbarkeit der Messsysteme an Zug- und Biegeproben aus den Werkstoffen Stahl und Holz Entwicklung einer Messmethodik zur Bestimmung der Schienenbewegung unter dem rollenden Rad
658

Space-Time Block Coding to Achieve Spatial Diversity in a Multiple Input Multiple Output System.

Ganji, Saichand January 2018 (has links)
No description available.
659

Development of a Novel Method for Automotive On-board Transmitter EMC Immunity Testing / Utveckling av en Immunitetsmetod för Elektromagnetisk Kompatibilitetstestning vid Simulering av Strålningskälla i Fordon

Holm, Ludvig January 2023 (has links)
As the automotive industry advances through technology integration, components are designed to operate at increasingly higher frequencies. Consequently, there will be an increasing demand for automotive electromagnetic compatibility (EMC) testing. Testing and certification institutes, such as RISE Research Institutes of Sweden AB, thus face an urgent need to develop innovative solutions that can effectively address this growing demand. This master thesis work concerns one EMC test method in particular - the On-board Transmitter (OBT). This is a test which mainly serves to test the immunity of vehicles to electromagnetic disturbances originating from hand-held devices. The conventional test is performed in an anechoic chamber and the methodology requires a substantial amount of time. The intent with this work is thus to evaluate the potential of a novel OBT method where the concept of a reverberating chamber is applied inside the vehicle compartment. Initially, the conventional method was examined from two mock-ups of idealized cases, and it was observed that the electromagnetic field in the near-field region of the transmitter is highly erratic. It was also concluded that the test setup is particularly sensitive to the polarization of the transmitter. With these findings in mind, the accuracy of the conventional method was deemed questionable. Evaluation of the proposed Reverberating On-board Transmitter (ROBT) method proved that the electromagnetic environment inside the vehicle did not resemble a perfect reverberation chamber. Which was expected as the absorbing material such as seating and upholstery likely prevents a field distribution similar to that in a reverberation chamber. Still, the intent of the project was to find a test method superior to the conventional method and it can be stated that the ROBT method is an adequate option due to its capacity to expose the electronics to isotropic radiation. This was found from two measures which this thesis introduces: expected isotropicity eiso, a relative measure of the electric field components and DDoF, a quantification of the spatial distribution inside a reverberation chamber. / EMC VERifiering av Autonoma fordon i modväxlad kammare (EMCVERA)
660

Reverberation Chamber Modeling Using Finite-Difference Time-Domain Method

Petit, Frédéric 12 1900 (has links)
Since the last few years, the unprecedented growth of communication systems involving the propagation of electromagnetic waves is particularly due to developments in mobile phone technology. The reverberation chamber is a reliable bench-test, enabling the study of the effects of electromagnetic waves on a specific electronic appliance. However, the operating of a reverberation chamber being rather complicated, development of numerical models are of utmost importance to determine the crucial parameters to be considered.This thesis consists in the modelling and the simulation of the operating principles of a reverberation chamber by means of the Finite-Difference Time-Domain method. After a brief study based on field and power measurements performed in a reverberation chamber, the second chapter deals with the different problems encountered during the modelling. The consideration of losses being a very important factor in the operating of the chamber, two methods of implementation of these losses are set out in this chapter. Chapter~3 consists in the analysis of the influence of the stirrer on the first eigenmodes of the chamber; the latter modes can undergo a frequency shift of several MHz. Chapter~4 shows a comparison of results issued from high frequency simulations and theoretical statistical results. The problem of an object placed in the chamber, resulting in a field disturbance is also tackled. Finally, in the fifth chapter, a comparison of statistical results for stirrers having different shapes is set out.

Page generated in 0.0386 seconds