• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 26
  • 18
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 76
  • 57
  • 40
  • 34
  • 32
  • 29
  • 22
  • 22
  • 22
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancing

Schopf, Martin 07 May 2014 (has links)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation 1 Introduction 2 Galerkin FEM error estimation in weak norms 2.1 Reaction-diffusion problems 2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition 2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 2.3.1 Weakly imposed characteristic boundary conditions 2.4 Numerical experiments 2.4.1 A reaction-diffusion problem with boundary layers 2.4.2 A reaction-diffusion problem with an interior layer 2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition 2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 3 Macro-interpolation on tensor product meshes 3.1 Introduction 3.2 Univariate C1-P2 macro-element interpolation 3.3 C1-Q2 macro-element interpolation on tensor product meshes 3.4 A theory on anisotropic macro-element interpolation 3.5 C1 macro-interpolation on anisotropic tensor product meshes 3.5.1 A reduced macro-element interpolation operator 3.5.2 The full C1-Q2 interpolation operator 3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes 3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates 3.6 An anisotropic macro-element of tensor product type 3.7 Application of macro-element interpolation on a tensor product Shishkin mesh 4 Balanced norm results for reaction-diffusion 4.1 The balanced finite element method of Lin and Stynes 4.2 A C0 interior penalty method 4.3 Galerkin finite element method 4.3.1 L2-norm error bounds and supercloseness 4.3.2 Maximum-norm error bounds 4.4 Numerical verification 4.5 Further developments and summary References
232

Patient-Derived Tumour Growth Modelling from Multi-Parametric Analysis of Combined Dynamic PET/MR Data

Martens, Corentin 03 March 2021 (has links) (PDF)
Gliomas are the most common primary brain tumours and are associated with poor prognosis. Among them, diffuse gliomas – which include their most aggressive form glioblastoma (GBM) – are known to be highly infiltrative. The diagnosis and follow-up of gliomas rely on positron emission tomography (PET) and magnetic resonance imaging (MRI). However, these imaging techniques do not currently allow to assess the whole extent of such infiltrative tumours nor to anticipate their preferred invasion patterns, leading to sub-optimal treatment planning. Mathematical tumour growth modelling has been proposed to address this problem. Reaction-diffusion tumour growth models, which are probably the most commonly used for diffuse gliomas growth modelling, propose to capture the proliferation and migration of glioma cells by means of a partial differential equation. Although the potential of such models has been shown in many works for patient follow-up and therapy planning, only few limited clinical applications have seemed to emerge from these works. This thesis aims at revisiting reaction-diffusion tumour growth models using state-of-the-art medical imaging and data processing technologies, with the objective of integrating multi-parametric PET/MRI data to further personalise the model. Brain tissue segmentation on MR images is first addressed with the aim of defining a patient-specific domain to solve the model. A previously proposed method to derive a tumour cell diffusion tensor from the water diffusion tensor assessed by diffusion-tensor imaging (DTI) is then implemented to guide the anisotropic migration of tumour cells along white matter tracts. The use of dynamic [S-methyl-11C]methionine ([11C]MET) PET is also investigated to derive patient-specific proliferation potential maps for the model. These investigations lead to the development of a microscopic compartmental model for amino acid PET tracer transport in gliomas. Based on the compartmental model results, a novel methodology is proposed to extract parametric maps from dynamic [11C]MET PET data using principal component analysis (PCA). The problem of estimating the initial conditions of the model from MR images is then addressed by means of a translational MRI/histology study in a case of non-operated GBM. Numerical solving strategies based on the widely used finite difference and finite element methods are finally implemented and compared. All these developments are embedded within a common framework allowing to study glioma growth in silico and providing a solid basis for further research in this field. However, commonly accepted hypothesis relating the outlines of abnormalities visible on MRI to tumour cell density iso-contours have been invalidated by the translational study carried out, leaving opened the questions of the initialisation and the validation of the model. Furthermore, the analysis of the temporal evolution of real multi-treated glioma patients demonstrates the limitations of the formulated model. These latter statements highlight current obstacles to the clinical application of reaction-diffusion tumour growth models and pave the way to further improvements. / Les gliomes sont les tumeurs cérébrales primitives les plus communes et sont associés à un mauvais pronostic. Parmi ces derniers, les gliomes diffus – qui incluent la forme la plus agressive, le glioblastome (GBM) – sont connus pour être hautement infiltrants. Le diagnostic et le suivi des gliomes s'appuient sur la tomographie par émission de positons (TEP) ainsi que l'imagerie par résonance magnétique (IRM). Cependant, ces techniques d'imagerie ne permettent actuellement pas d'évaluer l'étendue totale de tumeurs aussi infiltrantes ni d'anticiper leurs schémas d'invasion préférentiels, conduisant à une planification sous-optimale du traitement. La modélisation mathématique de la croissance tumorale a été proposée pour répondre à ce problème. Les modèles de croissance tumorale de type réaction-diffusion, qui sont probablement les plus communément utilisés pour la modélisation de la croissance des gliomes diffus, proposent de capturer la prolifération et la migration des cellules tumorales au moyen d'une équation aux dérivées partielles. Bien que le potentiel de tels modèles ait été démontré dans de nombreux travaux pour le suivi des patients et la planification de thérapies, seules quelques applications cliniques restreintes semblent avoir émergé de ces derniers. Ce travail de thèse a pour but de revisiter les modèles de croissance tumorale de type réaction-diffusion en utilisant des technologies de pointe en imagerie médicale et traitement de données, avec pour objectif d'y intégrer des données TEP/IRM multi-paramétriques pour personnaliser davantage le modèle. Le problème de la segmentation des tissus cérébraux dans les images IRM est d'abord adressé, avec pour but de définir un domaine propre au patient pour la résolution du modèle. Une méthode proposée précédemment permettant de dériver un tenseur de diffusion tumoral à partir du tenseur de diffusion de l'eau évalué par imagerie DTI a ensuite été implémentée afin de guider la migration anisotrope des cellules tumorales le long des fibres de matière blanche. L'utilisation de l'imagerie TEP dynamique à la [S-méthyl-11C]méthionine ([11C]MET) est également investiguée pour la génération de cartes de potentiel prolifératif propre au patient afin de nourrir le modèle. Ces investigations ont mené au développement d'un modèle compartimental pour le transport des traceurs TEP dérivés des acides aminés dans les gliomes. Sur base des résultats du modèle compartimental, une nouvelle méthodologie est proposée utilisant l'analyse en composantes principales pour extraire des cartes paramétriques à partir de données TEP dynamiques à la [11C]MET. Le problème de l'estimation des conditions initiales du modèle à partir d'images IRM est ensuite adressé par le biais d'une étude translationelle combinant IRM et histologie menée sur un cas de GBM non-opéré. Différentes stratégies de résolution numérique basées sur les méthodes des différences et éléments finis sont finalement implémentées et comparées. Tous ces développements sont embarqués dans un framework commun permettant d'étudier in silico la croissance des gliomes et fournissant une base solide pour de futures recherches dans le domaine. Cependant, certaines hypothèses communément admises reliant les délimitations des anormalités visibles en IRM à des iso-contours de densité de cellules tumorales ont été invalidée par l'étude translationelle menée, laissant ouverte les questions de l'initialisation et de la validation du modèle. Par ailleurs, l'analyse de l'évolution temporelle de cas réels de gliomes multi-traités démontre les limitations du modèle. Ces dernières affirmations mettent en évidence les obstacles actuels à l'application clinique de tels modèles et ouvrent la voie à de nouvelles possibilités d'amélioration. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
233

From local to global: Complex behavior of spatiotemporal systems with fluctuating delay times: From local to global: Complex behavior of spatiotemporal systemswith fluctuating delay times

Wang, Jian 05 February 2014 (has links)
The aim of this thesis is to investigate the dynamical behaviors of spatially extended systems with fluctuating time delays. In recent years, the study of spatially extended systems and systems with fluctuating delays has experienced a fast growth. In ubiquitous natural and laboratory situations, understanding the action of time-delayed signals is a crucial for understanding the dynamical behavior of these systems. Frequently, the length of the delay is found to change with time. Spatially extended systems are widely studied in many fields, such as chemistry, ecology, and biology. Self-organization, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics in modern science. The first part of this thesis considers the discrete system. Diffusively coupled map lattices with a fluctuating delay are used in the study. The uncoupled local dynamics of the considered system are represented by the delayed logistic map. In particular, the influences of diffusive coupling and fluctuating delay are studied. To observe and understand the influences, the results for the considered system are compared with coupled map lattices without delay and with a constant delay as well as with the uncoupled logistic map with fluctuating delays. Identifying different patterns, determining the existence of traveling wave solutions, and specifying the fully synchronized stable state are the focus of this part of the study. The Lyapunov exponent, the master stability function, spectrum analysis, and the structure factor are used to characterize the different states and the transitions between them. The second part examines the continuous system. The delay is introduced into the reactionterm of the Fisher-KPP equation. The focus of this part of study is the time-delay-induced Turing instability in one-component reaction-diffusion systems. Turing instability has previously only been found in multiple-component reaction-diffusion systems. However, this work demonstrates with the help of the stability exponent that fluctuating delay can result in Turing instability in one-component reaction-diffusion systems as well. / Ziel der vorliegenden Arbeit ist die Untersuchung der Einflüsse der zeitlich fluktuierenden Verzögerungen in räumlich ausgedehnten diffusiven Systemen. Durch den Vergleich von Systemen mit konstanter Verzögerung bzw. Systemen ohne räumliche Kopplung erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise der Dynamik des räumlich ausgedehnten diffusiven Systems mit fluktuierenden Verzögerungen. Im ersten Teil werden diskrete Systeme in Form von diffusiven Coupled Map Lattices untersucht. Als die lokale iterierte Abbildung des betrachteten Systems wird die logistische Abbildung mit Verzögerung gewählt. In diesem Teil liegt der Fokus auf Musterbildung, Existenz von Multiattraktoren und laufenden Wellen sowie der Möglichkeit der vollen Synchronisation. Masterstabilitätsfunktion, Lyapunov Exponent und Spektrumsanalyse werden benutzt, um das dynamische Verhalten zu verstehen. Im zweiten Teil betrachten wir kontinuierliche Systeme. Hier wird die Fisher-KPP Gleichung mit Verzögerungen im Reaktionsteil untersucht. In diesem Teil liegt der Fokus auf der Existenz der Turing Instabilität. Mit Hilfe von analytischen und numerischen Berechnungen wird gezeigt, dass bei fluktuierenden Verzögerungen eine Turing Instabilität auch in 1-Komponenten-Reaktions-Diffusionsgleichungen gefunden werden kann

Page generated in 0.0865 seconds