• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 26
  • 18
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 234
  • 234
  • 76
  • 57
  • 40
  • 34
  • 33
  • 29
  • 23
  • 22
  • 22
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Intracellular Flows and Fluctuations

Elf, Johan January 2004 (has links)
Mathematical models are now gaining in importance for descriptions of biological processes. In this thesis, such models have been used to identify and analyze principles that govern bacterial protein synthesis under amino acid limitation. New techniques, that are generally applicable for analysis of intrinsic fluctuations in systems of chemical reactions, are also presented. It is shown how multi-substrate reactions, such as protein synthesis, may display zero order kinetics below saturation, because an increase in one substrate pool is compensated by a decrease in another, so that the overall flow is unchanged. Under those conditions, metabolite pools display hyper sensitivity and large fluctuations, unless metabolite synthesis is carefully regulated. It is demonstrated that flow coupling in protein synthesis has consequences for transcriptional control of amino acid biosynthetic operons, accuracy of mRNA translation and the stringent response. Flow coupling also determines the choices of synonymous codons in a number of cases. The reason is that tRNA isoacceptors, cognate to the same amino acid, often read different codons and become deacylated to very different degrees when their amino acid is limiting for protein synthesis. This was demonstrated theoretically and used to successfully predict the choices of control codons in ribosome mediated transcriptional attenuation and codon bias in stress response genes. New tools for the analysis of internal fluctuations have been forged, most importantly, an efficient Monte Carlo algorithm for simulation of the Markov-process corresponding to the reaction-diffusion master equation. The algorithm makes it feasible to analyze stochastic kinetics in spatially extended systems. It was used to demonstrate that bi-stable chemical systems can display spontaneous domain separation also in three spatial dimensions. This analysis reveals geometrical constraints on biochemical memory circuits built from bistable systems. Further, biochemical applications of the Fokker-Planck equation and the Linear Noise Approximation have been explored.
62

Modeling and Analysis of Population Dynamics in Advective Environments

Vassilieva, Olga 16 May 2011 (has links)
We study diffusion-reaction-advection models describing population dynamics of aquatic organisms subject to a constant drift, with reflecting upstream and outflow downstream boundary conditions. We consider three different models: single logistically growing species, two and three competing species. In the case of a single population, we determine conditions for existence, uniqueness and stability of non-trivial steady-state solutions. We analyze the dependence of such solutions on advection speed, growth rate and length of the habitat. Such analysis offers a possible explanation of the "drift paradox" in our context. We also introduce a spatially implicit ODE (nonspatial approximation) model which captures the essential behavior of the original PDE model. In the case of two competing species, we use a diffusion-advection version of the Lotka-Volterra competition model. Combining numerical and analytical techniques, in both the spatial and nonspatial approximation settings, we describe the effect of advection on competitive outcomes. Finally, in the case of three species, we use the nonspatial approximation approach to analyze and classify the possible scenarios as we change the flow speed in the habitat.
63

The Origin of Wave Blocking for a Bistable Reaction-Diffusion Equation : A General Approach

Roy, Christian 12 April 2012 (has links)
Mathematical models displaying travelling waves appear in a variety of domains. These waves are often faced with different kinds of perturbations. In some cases, these perturbations result in propagation failure, also known as wave-blocking. Wave-blocking has been studied in the case of several specific models, often with the help of numerical tools. In this thesis, we will display a technique that uses symmetry and a center manifold reduction to find a criterion which defines regions in parameter space where a wave will be blocked. We focus on waves with low velocity and small symmetry-breaking perturbations, which is where the blocking initiates; the organising center. The range of the tools used makes the technique easily generalizable to higher dimensions. In order to demonstrate this technique, we apply it to the bistable equation. This allows us to do calculations explicitly. As a result, we show that wave-blocking occurs inside a wedge originating from the organising center and derive an expression for this wedge to leading order. We verify our results with some numerical simulations.
64

Modeling and Analysis of Population Dynamics in Advective Environments

Vassilieva, Olga 16 May 2011 (has links)
We study diffusion-reaction-advection models describing population dynamics of aquatic organisms subject to a constant drift, with reflecting upstream and outflow downstream boundary conditions. We consider three different models: single logistically growing species, two and three competing species. In the case of a single population, we determine conditions for existence, uniqueness and stability of non-trivial steady-state solutions. We analyze the dependence of such solutions on advection speed, growth rate and length of the habitat. Such analysis offers a possible explanation of the "drift paradox" in our context. We also introduce a spatially implicit ODE (nonspatial approximation) model which captures the essential behavior of the original PDE model. In the case of two competing species, we use a diffusion-advection version of the Lotka-Volterra competition model. Combining numerical and analytical techniques, in both the spatial and nonspatial approximation settings, we describe the effect of advection on competitive outcomes. Finally, in the case of three species, we use the nonspatial approximation approach to analyze and classify the possible scenarios as we change the flow speed in the habitat.
65

The Origin of Wave Blocking for a Bistable Reaction-Diffusion Equation : A General Approach

Roy, Christian 12 April 2012 (has links)
Mathematical models displaying travelling waves appear in a variety of domains. These waves are often faced with different kinds of perturbations. In some cases, these perturbations result in propagation failure, also known as wave-blocking. Wave-blocking has been studied in the case of several specific models, often with the help of numerical tools. In this thesis, we will display a technique that uses symmetry and a center manifold reduction to find a criterion which defines regions in parameter space where a wave will be blocked. We focus on waves with low velocity and small symmetry-breaking perturbations, which is where the blocking initiates; the organising center. The range of the tools used makes the technique easily generalizable to higher dimensions. In order to demonstrate this technique, we apply it to the bistable equation. This allows us to do calculations explicitly. As a result, we show that wave-blocking occurs inside a wedge originating from the organising center and derive an expression for this wedge to leading order. We verify our results with some numerical simulations.
66

Computational models of signaling processes in cells with applications: Influence of stochastic and spatial effects

January 2012 (has links)
The usual approach to the study of signaling pathways in biological systems is to assume that high numbers of cells and of perfectly mixed molecules within cells are involved. To study the temporal evolution of the system averaged over the cell population, ordinary differential equations are usually used. However, this approach has been shown to be inadequate if few copies of molecules and/or cells are present. In such situation, a stochastic or a hybrid stochastic/deterministic approach needs to be used. Moreover, considering a perfectly mixed system in cases where spatial effects are present can be an over-simplifying assumption. This can be corrected by adding diffusion terms to the ordinary differential equations describing chemical reactions and proliferation kinetics. However, there exist cases in which both stochastic and spatial effects have to be considered. We study the relevance of differential equations, stochastic Gillespie algorithm, and deterministic and stochastic reaction-diffusion models for the study of important biological processes, such as viral infection and early carcinogenesis. To that end we have developed two optimized libraries of C functions for R (r-project.org) to simulate biological systems using Petri Nets, in a pure deterministic, pure stochastic, or hybrid deterministic/stochastic fashion, with and without spatial effects. We discuss our findings in the terms of specific biological systems including signaling in innate immune response, early carcinogenesis and spatial spread of viral infection.
67

Application Of The Boundary Element Method To Parabolic Type Equations

Bozkaya, Nuray 01 June 2010 (has links) (PDF)
In this thesis, the two-dimensional initial and boundary value problems governed by unsteady partial differential equations are solved by making use of boundary element techniques. The boundary element method (BEM) with time-dependent fundamental solution is presented as an efficient procedure for the solution of diffusion, wave and convection-diffusion equations. It interpenetrates the equations in such a way that the boundary solution is advanced to all time levels, simultaneously. The solution at a required interior point can then be obtained by using the computed boundary solution. Then, the coupled system of nonlinear reaction-diffusion equations and the magnetohydrodynamic (MHD) flow equations in a duct are solved by using the time-domain BEM. The numerical approach is based on the iteration between the equations of the system. The advantage of time-domain BEM are still made use of utilizing large time increments. Mainly, MHD flow equations in a duct having variable wall conductivities are solved successfully for large values of Hartmann number. Variable conductivity on the walls produces coupled boundary conditions which causes difficulties in numerical treatment of the problem by the usual BEM. Thus, a new time-domain BEM approach is derived in order to solve these equations as a whole despite the coupled boundary conditions, which is one of the main contributions of this thesis. Further, the full MHD equations in stream function-vorticity-magnetic induction-current density form are solved. The dual reciprocity boundary element method (DRBEM), producing only boundary integrals, is used due to the nonlinear convection terms in the equations. In addition, the missing boundary conditions for vorticity and current density are derived with the help of coordinate functions in DRBEM. The resulting ordinary differential equations are discretized in time by using unconditionally stable Gear&#039 / s scheme so that large time increments can be used. The Navier-Stokes equations are solved in a square cavity up to Reynolds number 2000. Then, the solution of full MHD flow in a lid-driven cavity and a backward facing step is obtained for different values of Reynolds, magnetic Reynolds and Hartmann numbers. The solution procedure is quite efficient to capture the well known characteristics of MHD flow.
68

Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes

Kunert, Gerd 09 November 2000 (has links) (PDF)
We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.
69

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Kunert, Gerd 03 January 2001 (has links) (PDF)
Singularly perturbed problems often yield solutions ith strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element meshes. The estimator is based on the solution of a local problem, and yields error bounds uniformly in the small perturbation parameter. The error estimation is efficient, i.e. a lower error bound holds. The error estimator is also reliable, i.e. an upper error bound holds, provided that the anisotropic mesh discretizes the problem sufficiently well. A numerical example supports the analysis of our anisotropic error estimator.
70

A note on the energy norm for a singularly perturbed model problem

Kunert, Gerd 16 January 2001 (has links) (PDF)
A singularly perturbed reaction-diffusion model problem is considered, and the choice of an appropriate norm is discussed. Particular emphasis is given to the energy norm. Certain prejudices against this norm are investigated and disproved. Moreover, an adaptive finite element algorithm is presented which exhibits an optimal error decrease in the energy norm in some simple numerical experiments. This underlines the suitability of the energy norm.

Page generated in 0.0804 seconds